- 1. Answer the following questions.
 - (a) (4 points) A birth-and-death Markov chain is a process with countably infinite state space and two types of transitions: births from i to i+1 and deaths from i to i-1. The transition probabilities can be defined as follows:

$$p_{ij} = \begin{cases} q_i, & \text{if } j = i - 1\\ p_i, & \text{if } j = i + 1\\ 1 - p_i - q_i, & \text{if } j = i\\ 0, & \text{otherwise} \end{cases}$$

q_i and $p_i + q_i \leq 1$.
e the transition matrix. Furthermore, give some real-world applications cand-Birth chains.
Describe the steps Box and Jenkins (1970) suggested should be involve cting an ARMA model.

(2 points) You want to fit an ARMA model to a given data. Suppose you first wish to restrict attention to pure models (AR and MA). How would you proceed with identifying lag orders?					
(2 points) Describe the Chapman–Kolmogorov relationship in plain terms.					
(2 points) Suppose X_0, X_1, \cdots be a Markov chain with transition matrix P and initial distribution α . State the distribution of X_n .					

2	Consider	tho	following	modal.
<i>Z</i> .	Consider	ше	TOHOWING	moder:

$$(1 - 0.3B + 1.1B^2)y_t = (1 - 0.5B)w_t.$$

(a)	(2 points) Characterize this model as a model in the ARMA(p, q) family, that is identify p and q.
(b)	(2 points) Determine whether this model corresponds to a stationary process. Explain your answer in plain language without providing any proof.
(c)	(2 points) Write this model without using backshift notation.
(d)	(2 points) Are there any redundant parameters? Justify.

e)	(2 points) Is this model causal? Show this.						
f)	(2 points) Is this model invertible? Show this.						

3. (5 points) Let the fourth order autoregressive process

$$x_t = \phi_4 x_{t-4} + w_t$$
, $0 < \phi_4 < 1$, where $\{w_t\} \stackrel{iid}{\sim} (0, \sigma_w^2)$.

Determine the autocorrelation function. Comment on the significance of this particul model.	laı

4.	(5 points) The number of failures N_t , which occur in a computer network over the time interval $[0,t)$, can be described by a homogeneous Poisson process $\{N_t, t \geq 0\}$. Or average, there is a failure after every 4 hours, i.e. the intensity of the process is equal to $\lambda = 0.25$ per hour. What is the probability of at most 1 failure in $[0,8)$, at least 2 failures in $[8,16)$, and at most 1 failure in $[16,24)$ (time unit: hour)?

5. Consider a machine that is capable of producing three types of parts. The state of the machine at time period n is denoted by a random variable X_n that takes values in $S = \{0, 1, 2, 3\}$, where 0 means the machine is idle and i = 1, 2 or 3 means the machine produces a type i in the time period. Suppose the machine's production schedule is Markovian in the sense that the next type of part it produces, or a possible idle period, depends only on its current state, and the probabilities of these changes do not depend on time. Suppose X_n is a Markov chain with the transition matrix

$$P = \begin{bmatrix} 0.1 & 0.2 & 0.2 & 0.5 \\ 0.3 & 0.4 & 0 & 0.3 \\ 0.4 & 0 & 0.4 & 0.2 \\ 0.3 & 0 & 0.2 & 0.5 \end{bmatrix}$$

)	(5 points)	Find the stationary distribution, $(\pi_1, \pi_2, \pi_3, \pi_4)$.

6. Based on the current Gross Domestic Product (GDP) price in South Africa from January 1960 to January 2021, the following output was generated.

DATE GDP

- 1 1/1/1960 1326466713
- 2 4/1/1960 1340643343
- 3 7/1/1960 1358577031
- 4 10/1/1960 1395671712
- 5 1/1/1961 1403260968
- 6 4/1/1961 1398952875

(a) (2 points) Share your thoughts on the time series plot of the current Gross Domestic Product (GDP) price in South Africa.

(b) (3 points) Would you please describe the output below? Would you please suggest possible methods to make your data stationary if it is not? Augmented Dickey-Fuller Test data: GDP Dickey-Fuller = -1.0061, Lag order = 6, p-value = 0.936 alternative hypothesis: stationary (c) (5 points) For the GDP data, we fitted three different ARIMA models: $ARIMA(1,1,1)(1,1,1)_4$, $ARIMA(1,1,1)(2,1,2)_4$ and $ARIMA(1,1,0)(0,1,1)_4$. Interpret the results of the model of your choice by comparing the outputs of three different models. Model 1: ARIMA $(1,1,1)(1,1,1)_4$ \$degrees_of_freedom [1] 236 \$ttable Estimate SE t.value p.value ar1 -0.6022 0.2806 -2.1460 0.0329 ma1 0.4448 0.3073 1.4476 0.1490 sar1 0.0762 0.1047 0.7277 0.4675 sma1 -0.8251 0.0537 -15.3772 0.0000 \$AIC [1] -4.638407\$AICc [1] -4.637715\$BIC [1] -4.596789

sigma^2 estimated as 0.0004994: log likelihood = 568.35,

Model 2: $ARIMA(1,1,1)(2,1,2)_4$

```
$degrees_of_freedom
[1] 234
$ttable
        Estimate
                    SE t.value p.value
     -0.6024 0.2782 -2.1652 0.0314
ar1
     0.4457 0.3046 1.4631 0.1448
ma1
sar1 -0.6010 0.3210 -1.8724 0.0624
sar2 0.0968 0.1009 0.9598 0.3381
sma1 -0.1467 0.3107 -0.4721 0.6373
sma2 -0.5705 0.2515 -2.2688 0.0242
$AIC
[1] -4.613625
$AICc
[1] -4.612161
$BIC
[1] -4.51336
sigma^2 estimated as 0.0005086: log likelihood = 567.56
Model 3: ARIMA(1,1,0)(0,1,1)_4
$degrees_of_freedom
[1] 238
$ttable
       Estimate
                    SE t.value p.value
     -0.1685 0.0643 -2.6189 0.0094
ar1
sma1 -0.7911 0.0520 -15.2276 0.0000
$AIC
[1] -4.632101
$AICc
[1] -4.631895
$BIC
[1] -4.58913
```

sigma^2 estimated as 0.000516: log likelihood = 565.8

STA03B3 Paper A - Page 13 of 15

2022

STA03B3/3B10

(3 points) Define a nonhomogeneous Poisson process. Give the distributions for the probability that k events will occur in time:	ution, mean, a interval $(s, s +$

(3 points)	S) Chapman–Kolmogorov relationship: for all $0 \cdot$	< r < n, then show that
	$P_{ij}^n = \sum_k P_{ik}^r P_{kj}^{(n-r)}.$	