Surname				
Full names	 	 	 	
Signature				

a)

Describe a sampling distribution in terms of repeated sampling.

b) If $Z_1, Z_2, ..., Z_n$ are independent and each has the standard normal distribution, then $Z_1^2 + Z_2^2 + ... + Z_n^2$ follows which distribution? (1)

c) Water samples are taken from water used for cooling as it is being discharged from a power plant into a river. It has been determined that as long as the mean temperature of the discharged water is at most 65°C, there will be no negative effects on the river's ecosystem. To investigate whether the plant is in compliance with regulations that prohibit a mean discharge water temperature above 65°C, 50 water samples will be taken at randomly selected times and the temperature of each sample recorded. State the relevant hypotheses and describe the type I and type II errors in the context of this situation. Which type of error would you consider more serious? Explain.

2

[8]

(3)

To test the ability of mechanics to identify simple engine problems, a car with a single simple problem was taken in turn to 72 different car repair facilities. Only 42 of the 72 mechanics who worked on the car correctly identified the problem. Find the probability of making a Type II error given p = 0.745. Suppose the rejection region is $\hat{p} < 0.74$.

QUESTION 3

A researcher classified his subjects as right-handed or left-handed by comparing thumbnail widths. He took a sample of 400 men and found that 80 could be classified as left-handed according to his criterion.

a) Estimate the proportion of all men in the population who would test to be left-handed using a 99% lower confidence bound. *Interpret your result*. (4)

3

STA01B1, 2022	Paper C	4

b) What sample size is necessary if the 95% confidence interval for p is to have a width of at most 0.1 irrespective of p? (3)

QUESTION 4

Which foams more when you pour it, Coke or Pepsi? Here are measurements by Dian Warfeld on the foam volume (mL) after pouring a can of Coke, based on a sample of 12 cans:

312.2	292.6	331.7	355.1	362.9	331.7
292.6	245.8	280.9	320.0	273.1	288.7

And here are the measurements for Pepsi, based on a sample of 12 cans:

148.3	210.7	152.2	117.1	89.7	140.5
128.8	167.8	156.1	136.6	124.9	136.6

The following summary statistics are given:

	PEPSI	COKE
Sample mean	307.3	142.4
Sample standard deviation	34.6	29.6

Assume normality of the underlying distributions.

a) Use the appropriate hypothesis to determine whether the average foam volume of Coke is less than the average foam volume of Pepsi. Use $\alpha = 0.10$. (10)

Parameters:

Hypotheses:

Test Statistic:

Rejection region:

Decision:

Conclusion:

b) Using your answer in a), comment on whether you are subject to a Type I or a Type II error. Describe this error in the context of this problem. (2)

6

c)	Using a significance level of 10	%, determine whether th	e equal variance assumption is
	satisfied.		(5)

Hypotheses:

Test Statistic:

Rejection region:

Decision:

Conclusion:

Determine whether

$$MSE = \frac{SSE}{n-k} = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_k - 1)s_k^2}{n-k}$$

as found when performing ANOVA, is an unbiased estimator of σ^2 or not. Keep in mind that one of the assumptions that has to be satisfied when performing an ANOVA, is the assumption of equal variances (homoscedasticity).

QUESTION 6

In a survey of study habits among first-year statistics students, 25 students are involved in a random sample. Their average daily study time on weekdays is 3.75 hours, with a standard deviation of 45 minutes. Predict the maximum number of hours that a first-year statistics student studies on weekdays by calculating a 97.5% upper *prediction* bound. **Interpret** your result.

7

STA01B1, 2022	Paper C	8

A study was carried out to see if fluoride toothpaste helps to prevent cavities. The dependent variable was the DMFS increment, the number of new **D**ecayed, **M**issing, and **F**illed **S**urfaces. The table gives summary data.

Group	Sample size	Sample mean	Sample SD
Control	289	12.83	8.31
Fluoride	260	11.18	7.51

a) Carry out the appropriate hypothesis test for the difference between true means and conclude whether fluoride toothpaste is beneficial, <u>using a significance level of 1%</u>. (9)

1. Parameters:

2. Null hypothesis:

3. Alternative hypothesis:

4. Test statistic:

5. Rejection region and p-value:

6. Decision:

7. Conclusion:

b) Which assumption(s) had to be satisfied before the test in a) could be applied?

9

[15]

QUESTION 8

A university department is reviewing the delivery methods it uses to teach and assess. It decides to undertake a series of controlled tests to assess the suitability of a particular method of delivery before implementing the new method. To test the hypothesis that the proposed method improves performance, the department randomly placed four students into three different groups, in which each student will experience one method of delivery only, and all sessions are taught by the same lecturer to reduce lecturer bias. The marks of the students are shown in the following table:

STUDENT	LECTURE + SEMINAR	WORKSHOP	WORKSHOP AND VIRTUAL LEARNING ENVIRONMENT
1	16	19	24
2	21	20	21
3	18	21	22
4	13	20	25

a) It is given that SST = 118. Construct an ANOVA table. Clearly show the calculation of SSTr. (6)

Source of variation	SS	df	MS	F
Treatments				
Error				
Total				

STAD	01B1, 2022	Paper C	10
b)	to indicate	nificance level of 5%, determine whether the data presents so a significant difference in mean performance among th Clearly state the hypotheses, give the critical value(s)	e three delivery

c) Explain the principle of Analysis of Variance (ANOVA) in no more than 3 sentences. (3)

d) The three treatment means were ranked using Tukey's procedure with $\alpha = 0.05$.

17	20	23
\overline{x}_1	\overline{x}_2	\overline{x}_3
		-

Interpret the given result and then comment on which delivery method should be used to teach and assess. (3)

The table below classifies 250 men according to place of work and place of birth.

	Place	of work
Place of Birth	Government	Private sector
Rural area	80	34
City	92	44

Test whether men who grow up in rural areas have a preference to either work in government or in the private sector. Use a 5% level of significance.

Null Hypothesis:

Test statistic:

Rejection region:

Decision:

Conclusion:

In an investigation into the effect of the landing speed on the number of landings made with a set of landing tyres on the Boeing 737, the following data was obtained:

Paper C

Observation	Number of landings	Landing speed
1	84	112
2	85	114
3	84	116
4	80	118
5	81	120
6	76	122
7	78	124
8	71	126
9	72	128
10	68	130
11	69	132
12	64	134

SUMMARY

OUTPUT

Regression S	tatistics				
Multiple R	0.968124802				
R Square	0.937265633				
Adjusted R Square	0.930992196				
Standard Error	1.860896844				
Observations	12				
ANOVA					
	df	SS	MS	F	Significance F
Regression	1	517.3706294	517.3706294	149.4022617	2.45642E-07
Residual	10	34.62937063	3.462937063		
Total	11	552			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%
ntercept	192.979021	9.585449482	20.13249575	2.01189E-09	171.6213086
Landing speed	- 0.951048951	0.077808006	- 12.22302179	2.45642E-07	-1.124415992

b) What proportion of variation in the *number of landings* can't be explained by the variation in *landing speed.* (2)

c) Give the value of the correlation coefficient and comment on the strength and direction of the relationship between *number of landings* and *landing speed.* (2)

d) Predict the *number of landings* when *landing speed* = 129. Comment on whether this prediction is reliable. (3)

- e) Calculate the value of the residual for x = 118 and explain the concept of a residual using your answer. (3)
- f) Do the data present sufficient evidence at the 5% level of significance to indicate that *number of landings* is linearly related to *landing speed*?
 Identify the two test statistics in the printout that can be used to answer this question. Clearly state the hypotheses, the calculated values of the two test statistics, the *p*-value and your final conclusion.

Consider estimating a population proportion of "successes" *p*. The natural estimator of *p* is the sample proportion of successes \hat{p} . The number of successes *X* in the sample has a binomial distribution with parameters *n* and *p*. It is known that \hat{p} is an unbiased estimator of *p*. Is \hat{p}^2 an unbiased estimator of p^2 ?

1	5

Table A	A.3 Standa	ard Normal (Curve Areas				$\Phi(z)$:	$= P(Z \le z)$		
								Stand	ard normal der	nsity curve
								CI CI	naded area = 0	$\mathbf{h}(z)$
									laucu area — s	$\Psi(\zeta)$
						-	/	$\frac{1}{0}$ z		
	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
Z	.00	.01	.02	.05	.04	.05	.00	.07	.00	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0017	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0038
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0352	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0722	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3482
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

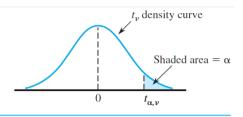
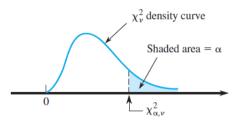

(continued)

 Table A.3
 Standard Normal Curve Areas (cont.)

 $\Phi(z) = P(Z \le z)$

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998


Table A.5Critical Values for *t* Distributions

				α			
v	.10	.05	.025	.01	.005	.001	.0005
1	3.078	6.314	12.706	31.821	63.657	318.31	636.62
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
32	1.309	1.694	2.037	2.449	2.738	3.365	3.622
34	1.307	1.691	2.032	2.441	2.728	3.348	3.601
36	1.306	1.688	2.028	2.434	2.719	3.333	3.582
38	1.304	1.686	2.024	2.429	2.712	3.319	3.566

Paper C

Table A.7 Critical Values for Chi-Squared Distributions

					α					
ν	.995	.99	.975	.95	.90	.10	.05	.025	.01	.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.843	5.025	6.637	7.882
2	0.010	0.020	0.051	0.103	0.211	4.605	5.992	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.344	12.837
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.085	16.748
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.440	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.012	18.474	20.276
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.534	20.090	21.954
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.022	21.665	23.587
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.724	26.755
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.735	27.687	29.817
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.600	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.577	32.799
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.407	7.564	8.682	10.085	24.769	27.587	30.190	33.408	35.716
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.843	7.632	8.906	10.117	11.651	27.203	30.143	32.852	36.190	38.580
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.033	8.897	10.283	11.591	13.240	29.615	32.670	35.478	38.930	41.399
22	8.643	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289	42.796
23	9.260	10.195	11.688	13.090	14.848	32.007	35.172	38.075	41.637	44.179
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.558
25	10.519	11.523	13.120	14.611	16.473	34.381	37.652	40.646	44.313	46.925
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.807	12.878	14.573	16.151	18.114	36.741	40.113	43.194	46.962	49.642
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.120	14.256	16.147	17.708	19.768	39.087	42.557	45.772	49.586	52.333
30	13.787	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
31	14.457	15.655	17.538	19.280	21.433	41.422	44.985	48.231	52.190	55.000
32	15.134	16.362	18.291	20.072	22.271	42.585	46.194	49.480	53.486	56.328
33	15.814	17.073	19.046	20.866	23.110	43.745	47.400	50.724	54.774	57.646
34	16.501	17.789	19.806	21.664	23.952	44.903	48.602	51.966	56.061	58.964
35	17.191	18.508	20.569	22.465	24.796	46.059	49.802	53.203	57.340	60.272
36	17.887	19.233	21.336	23.269	25.643	47.212	50.998	54.437	58.619	61.581
37	18.584	19.960	22.105	24.075	26.492	48.363	52.192	55.667	59.891	62.880
38	19.289	20.691	22.878	24.884	27.343	49.513	53.384	56.896	61.162	64.181
39	19.994	21.425	23.654	25.695	28.196	50.660	54.572	58.119	62.426	65.473
40	20.706	22.164	24.433	26.509	29.050	51.805	55.758	59.342	63.691	66.766
			·	-						

					$\nu_1 = \text{num}$	nerator df				
	α	1	2	3	4	5	6	7	8	9
	.100	39.86	49.50	53.59	55.83	57.24	58.20	58.91	59.44	59.86
1	.050	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
1	.010	4052.20	4999.50	5403.40	5624.60	5763.60	5859.00	5928.40	5981.10	6022.50
	.001	405,284	500,000	540,379	562,500	576,405	585,937	592,873	598,144	602,284
	.100	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38
2	.050	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
2	.010	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39
	.001	998.50	999.00	999.17	999.25	999.30	999.33	999.36	999.37	999.39
	.100	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24
3	.050	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
5	.010	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35
	.001	167.03	148.50	141.11	137.10	134.58	132.85	131.58	130.62	129.86
	.100	4.54	4.32	4.19	4.11	4.05	4.01	3.98	3.95	3.94
4	.050	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
4	.010	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66
	.001	74.14	61.25	56.18	53.44	51.71	50.53	49.66	49.00	48.47
	.100	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32
5	.050	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
5	.010	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16
	.001	47.18	37.12	33.20	31.09	29.75	28.83	28.16	27.65	27.24
ŧ	.100	3.78	3.46	3.29	3.18	3.11	3.05	3.01	2.98	2.96
e denominator df 9 01	.050	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
6 at	.010	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98
	.001	35.51	27.00	23.70	21.92	20.80	20.03	19.46	19.03	18.69
eno	.100	3.59	3.26	3.07	2.96	2.88	2.83	2.78	2.75	2.72
ĕ	.050	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
۲ III	.010	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72
à	.001	29.25	21.69	18.77	17.20	16.21	15.52	15.02	14.63	14.33
	.100	3.46	3.11	2.92	2.81	2.73	2.67	2.62	2.59	2.56
	.050	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
8	.010	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91
	.001	25.41	18.49	15.83	14.39	13.48	12.86	12.40	12.05	11.77
	.100	3.36	3.01	2.81	2.69	2.61	2.55	2.51	2.47	2.44
	.050	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
9	.010	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35
	.001	22.86	16.39	13.90	12.56	11.71	11.13	10.70	10.37	10.11
	.100	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35
	.050	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
10	.030	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94
	.010	21.04	14.91	12.55	11.28	10.48	9.93	9.52	9.20	8.96
	.100 .050	3.23 4.84	2.86 3.98	2.66 3.59	2.54 3.36	2.45 3.20	2.39 3.09	2.34 3.01	2.30 2.95	2.27 2.90
11	.050	4.64 9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63
	.010	9.63	13.81	11.56	10.35	5.52 9.58	9.07	4.89 8.66	4.74 8.35	4.65
	.100	3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.21
12	.050	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
	.010	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39
	.001	18.64	12.97	10.80	9.63	8.89	8.38	8.00	7.71	7.48

Table A.9 Critical Values for *F* Distributions

(continued)

				$\nu_1 =$	= numerato	r df				
10	12	15	20	25	30	40	50	60	120	1000
60.19	60.71	61.22	61.74	62.05	62.26	62.53	62.69	62.79	63.06	63.30
241.88	243.91	245.95	248.01	249.26	250.10	251.14	251.77	252.20	253.25	254.19
6055.80	6106.30	6157.30	6208.70	6239.80	6260.60	6286.80	6302.50	6313.00	6339.40	6362.70
605,621	610,668	615,764	620,908	624,017	626,099	628,712	630,285	631,337	633,972	636,301
9.39	9.41	9.42	9.44	9.45	9.46	9.47	9.47	9.47	9.48	9.49
19.40	19.41	19.43	19.45	19.46	19.46	19.47	19.48	19.48	19.49	19.49
99.40	99.42	99.43	99.45	99.46	99.47	99.47	99.48	99.48	99.49	99.50
999.40	999.42	999.43	999.45	999.46	999.47	999.47	999.48	999.48	999.49	999.50
5.23	5.22	5.20	5.18	5.17	5.17	5.16	5.15	5.15	5.14	5.13
8.79	8.74	8.70	8.66	8.63	8.62	8.59	8.58	8.57	8.55	8.53
27.23	27.05	26.87	26.69	26.58	26.50	26.41	26.35	26.32	26.22	26.14
129.25	128.32	127.37	126.42	125.84	125.45	124.96	124.66	124.47	123.97	123.53
3.92	3.90	3.87	3.84	3.83	3.82	3.80	3.80	3.79	3.78	3.76
5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.70	5.69	5.66	5.63
14.55	14.37	14.20	14.02	13.91	13.84	13.75	13.69	13.65	13.56	13.47
48.05	47.41	46.76	46.10	45.70	45.43	45.09	44.88	44.75	44.40	44.09
3.30	3.27	3.24	3.21	3.19	3.17	3.16	3.15	3.14	3.12	3.11
4.74	4.68	4.62	4.56	4.52	4.50	4.46	4.44	4.43	4.40	4.37
10.05	9.89	9.72	9.55	9.45	9.38	9.29	9.24	9.20	9.11	9.03
26.92	26.42	25.91	25.39	25.08	24.87	24.60	24.44	24.33	24.06	23.82
2.94	2.90	2.87	2.84	2.81	2.80	2.78	2.77	2.76	2.74	2.72
4.06	4.00	3.94	3.87	3.83	3.81	3.77	3.75	3.74	3.70	3.67
7.87	7.72	7.56	7.40	7.30	7.23	7.14	7.09	7.06	6.97	6.89
18.41	17.99	17.56	17.12	16.85	16.67	16.44	16.31	16.21	15.98	15.77
2.70	2.67	2.63	2.59	2.57	2.56	2.54	2.52	2.51	2.49	2.47
3.64	3.57	3.51	3.44	3.40	3.38	3.34	3.32	3.30	3.27	3.23
6.62	6.47	6.31	6.16	6.06	5.99	5.91	5.86	5.82	5.74	5.66
14.08	13.71	13.32	12.93	12.69	12.53	12.33	12.20	12.12	11.91	11.72
2.54	2.50	2.46	2.42	2.40	2.38	2.36	2.35	2.34	2.32	2.30
3.35	3.28	3.22	3.15	3.11	3.08	3.04	3.02	3.01	2.97	2.93
5.81	5.67	5.52	5.36	5.26	5.20	5.12	5.07	5.03	4.95	4.87
11.54	11.19	10.84	10.48	10.26	10.11	9.92	9.80	9.73	9.53	9.36
2.42	2.38	2.34	2.30	2.27	2.25	2.23	2.22	2.21	2.18	2.16
3.14	3.07	3.01	2.94	2.89	2.86	2.83	2.80	2.79	2.75	2.71
5.26	5.11	4.96	4.81	4.71	4.65	4.57	4.52	4.48	4.40	4.32
9.89	9.57	9.24	8.90	8.69	8.55	8.37	8.26	8.19	8.00	7.84
2.32	2.28	2.24	2.20	2.17	2.16	2.13	2.12	2.11	2.08	2.06
2.98	2.91	2.85	2.77	2.73	2.70	2.66	2.64	2.62	2.58	2.54
4.85	4.71	4.56	4.41	4.31	4.25	4.17	4.12	4.08	4.00	3.92
8.75	8.45	8.13	7.80	7.60	7.47	7.30	7.19	7.12	6.94	6.78
2.25	2.21	2.17	2.12	2.10	2.08	2.05	2.04	2.03	2.00	1.98
2.85	2.79	2.72	2.65	2.60	2.57	2.53	2.51	2.49	2.45	2.41
4.54	4.40	4.25	4.10	4.01	3.94	3.86	3.81	3.78	3.69	3.61
7.92	7.63	7.32	7.01	6.81	6.68	6.52	6.42	6.35	6.18	6.02
2.19	2.15	2.10	2.06	2.03	2.01	1.99	1.97	1.96	1.93	1.91
2.75	2.69	2.62	2.54	2.50	2.47	2.43	2.40	2.38	2.34	2.30
4.30	4.16	4.01	3.86	3.76	3.70	3.62	3.57	3.54	3.45	3.37
7.29	7.00	6.71	6.40	6.22	6.09	5.93	5.83	5.76	5.59	5.44

Table A.9 Critical Values for F Distributions (cont.)

(continued)