QUESTION 1:

[36 MARKS]
1.1. Consider two hypothetical pure substances, $\mathrm{AB}(s)$ and $\mathrm{XY}(s)$. When equal molar amounts of these substances are placed in separate $500-\mathrm{mL}$ samples of water, they undergo the following reactions:

$$
\begin{align*}
& \mathrm{AB}(s) \rightarrow \mathrm{A}^{+}(a q)+\mathrm{B}^{-}(a q) \\
& \mathrm{XY}(s) \rightarrow \mathrm{XY}(a q) \tag{2}
\end{align*}
$$

1.1.1. Which solution would you expect to have the lower boiling point? Explain.

1.1.2. Would you expect the vapor pressures of the two solutions to be equal? If not, which one would you expect to have the higher vapor pressure? Explain.
1.1.3. Briefly describe a procedure that would make the two solutions have the same boiling point.
1.2. When 0.10 mol of the ionic solid NaX , where X is an unknown anion, is dissolved in enough water to make 1.0 L of solution, the pH of the solution is 9.12 . When 0.10 mol of the ionic solid ACl , where A is an unknown cation, is dissolved in enough water to make 1.0 L of solution, the pH of the solution is 7.00 .
1.2.1. What would be the pH of 1.0 L of solution that contained 0.10 mol of AX ? Be sure to document how you arrived at your answer.
1.2.2. In the AX solution prepared above, is there any $\mathrm{H}_{3} \mathrm{O}^{+}$present? If so, what is the source? Compare the $\left[\mathrm{OH}^{-}\right]$in the solution to the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.
1.3. The heat (enthalpy) of reaction for a given reaction is endothermic. Which (reactants or products) requires less energy to overcome the activation barrier? Explain.
1.4. At $330^{\circ} \mathrm{C}$, the rate constant for the decomposition of NO_{2} is $0.775 \mathrm{~L} /(\mathrm{mol} . \mathrm{s})$. If the reaction is second order,
1.4.1. What is the concentration of NO_{2} after 2.5×10^{2} seconds if the starting concentration was 0.050 M ?
1.4.2. What is the half-life of this reaction under these conditions?
1.5. Consider the reaction
$2 \mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta H^{\circ}=566 \mathrm{~kJ}$
Discuss the temperature and pressure conditions that would give the best yield of carbon monoxide.
1.6. Lead(II) arsenate, $\mathrm{Pb}_{3}\left(\mathrm{AsO}_{4}\right)_{2}$, has been used as an insecticide. It is only slightly soluble in water. If the solubility is $3.0 \times 10^{-5} \mathrm{~g} / \mathrm{L}$, what is the solubility product constant? Assume that the solubility equilibrium is the only important one. $\left(\mathrm{Mm}\left(\mathrm{Pb}_{3}\left(\mathrm{AsO}_{4}\right)_{2}\right)=899 \mathrm{~g} / \mathrm{mol}\right)$
1.7. Explain why water spontaneously freezes to form ice below $0^{\circ} \mathrm{C}$ even though the entropy of the water decreases during the state change.
1.7.1. Why is the freezing of water not spontaneous above $0^{\circ} \mathrm{C}$?

QUESTION 2: (START ON A NEW PAGE)

[23 MARKS]
2.1. A voltaic cell utilizes the following reaction:
$\mathrm{Al}(\mathrm{s})+3 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Ag}(\mathrm{s})$
What is the effect on the cell emf of each of the following changes? Explain your answers.
2.1.1. Water is added to the anode half-cell, diluting the solution.
2.1.2. The size of the aluminum electrode is increased.
2.1.3. A solution of AgNO_{3} is added to the cathode half-cell, increasing the quantity of Ag^{+} but not changing its concentration.
2.1.4. HCl is added to the AgNO_{3} solution, precipitating some of the Ag^{+}as AgCl .
2.2. Given the following standard reduction potentials,

$$
\begin{array}{ll}
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \leftrightarrows \mathrm{Ag}(\mathrm{~s}) & \mathrm{E}^{\circ}=0.80 \mathrm{~V} \\
\operatorname{AgCN}(\mathrm{~s})+\mathrm{e}^{-} \leftrightarrows \mathrm{Ag}(\mathrm{~s})+\mathrm{CN}^{-}(\mathrm{aq}) & \mathrm{E}^{\circ}=-0.01 \mathrm{~V} \tag{5}
\end{array}
$$

calculate the solubility product ($\mathrm{K}_{\text {sp }}$) of AgCN at $25^{\circ} \mathrm{C}$.
2.3. An iron object is plated with a coating of cobalt to protect against corrosion. Does the cobalt protect iron by cathodic protection? Explain.
2.4. Consider a molten mixture of BaCl_{2} and CuI_{2}
2.4.1. Why must the mixture be in the molten state before it is electrolyzed?
2.4.2. Write the anode reaction, cathode reaction, and overall cell reactions for the electrolysis of the molten mixture.
2.4.3. How many grams of product would be produced at the anode in the electrolysis of this molten mixture by a current of 4.25 A for 35.0 min ?

QUESTION 3: (START ON A NEW PAGE)
[22 MARKS]
3.1. Explain why the bond angles in the hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$are less than the bond angles in methane but greater than the bond angles in water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. Indicate the bond angles in methane and water in your explanation.
3.2. You encounter some hydrocarbons with the following IUPAC names. Determine if these IUPAC names are correct or incorrect. For each incorrect name, explain why it is incorrect and give the correct IUPAC name.
3.2.1.3-ethyl-3-octen-5-ol
3.2.2.(E)-1-isopropyl-1-butene
3.2.3.3-tert-butyl-2-methylcyclopentanone
3.2.4.1,5-dimethylcyclohexane
3.2.5.3-butyl-2,2-dimethylhexane
3.3. Explain why the cis-isomer of 2-butene has a higher boiling point $\left(4^{\circ} \mathrm{C}\right)$ than the trans-isomer $\left(1^{\circ} \mathrm{C}\right)$.
3.4. Explain why the boiling point of carboxylic acids are higher than the boiling point of alcohols.

QUESTION 4: (START ON A NEW PAGE)
[25 MARKS]
4.1. The following reaction has three mechanistic steps. Redraw the reaction mechanism and draw all curved arrows necessary to complete the mechanism.

4.2. Draw a stepwise mechanism for the acid-catalyzed hydration of 3,3-dimethylbut-1-ene.
4.3. Write down one difference between addition polymerization and condensation polymerization.
4.4. Give the required IUPAC name of either reactant(s) or product(s) in the following table depicting the outcome of different organic reactions:

Question	Reactant 1	Reactant 2	Reaction conditions	Products
4.4 .1	2,2,4-trimethylpentane	Br_{2}	UV light	
4.4 .2			H^{+}	
4.4 .3		Not applicable	$\mathrm{H}_{2} \mathrm{SO}_{4}, \Delta$	2-methylprop-1-ene + $\mathbf{H}_{2} \mathbf{O}$
4.4 .4	3-methylhex-2-ene	Not applicable	Br_{2} and $\mathrm{CCl}_{4} \mathrm{O}$ as solvent	

4.5. What is the name of the reaction taking place in part 4.4.3?
4.5.1. What is the role of the acid in the reaction taking place in part 4.4.3?
4.6. Predict the product(s) and identify the mechanism ($\mathrm{S}_{\mathrm{N}} 1 / \mathrm{S}_{\mathrm{N}} 2 / \mathrm{E} 1 / \mathrm{E} 2$) when 1-bromo-1ethylcyclohexane is treated with the following reagents. Give a brief explanation for your choice:

1-bromo-1-ethylcyclohexane

Question number	Reagent	Product(s)	Mechanism (SN1/SN2/E1/E2) explanation	with brief	
4.6 .1	$\mathrm{CH}_{3} \mathrm{OH}$				
4.6 .2	NaOEt				

END OF PAPER

PSFT0B3 DATA

N_{A} (Avogadro's number) $=6.022 \times 10^{23}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}=760 \mathrm{torr}=1.01 \times 10^{5} \mathrm{~Pa}=1.013 \mathrm{bar}$
R (gas constant) $=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol}$
R (gas constant) $=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{F}($ Faraday's constant $)=96500 \mathrm{C} \mathrm{mol}^{-1}$

SOLUBILITY TABLE:

Anion	Solubility rule
Mostly soluble	
Acetates, nitrates and perchlorates	All cations form soluble compounds. $\left(\mathrm{KClO}_{4}\right.$ and $\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ slightly soluble $)$
Chlorides, bromides, iodides	All cations form soluble compounds except $\mathrm{Hg}_{2}{ }^{2+}, \mathrm{Ag}^{+}$and $\mathrm{Pb}^{2+}\left(\mathrm{PbCl}_{2}\right.$ and PbBr_{2} slightly soluble $)$
Sulfates	All cations form soluble compounds except $\mathrm{Pb}^{2+}, \mathrm{Ba}^{2+}$ and $\mathrm{Sr}^{2+}\left(\mathrm{Ca}^{2+}\right.$ and Ag^{+}form slightly soluble compounds $)$
Mostly insoluble	All cations form insoluble compounds except Group IA metals and $\mathrm{NH}_{4}{ }^{+}$
Carbonates and phosphates	All cations form insoluble compounds except Group IA and ${\mathrm{IIA} \mathrm{metals} \mathrm{and} \mathrm{NH}_{4}+}$
Sulfides	All cations form insoluble compounds except Group IA metals, Ba
$\left[\begin{array}{lc}2+ \\ \text { and } \mathrm{Sr}^{2+} \text { and } \mathrm{NH}_{4}{ }^{+}\end{array}\right.$	
Hydroxides $)_{2}$ is slightly soluble]	

IUPAC Periodic Table of the Elements

1																	18
$\stackrel{1}{\mathrm{H}}$																	$\begin{aligned} & \frac{2}{2} \\ & \mathrm{He} \end{aligned}$
${ }_{\text {11.0008, } 1.0088}^{1.082]}$	2		Key:									13	14	15	16	17	4.0026
3	4		atomic nu									5	6	7	8	9	10
Li	Be		Symb									B	C	N	0	F	Ne
	9.012		comen									(1081 ${ }^{1081}$	${ }_{121209011}^{12012}$	${ }_{[14.006 .14008}^{1408}$		18998	20.180
${ }^{11}$	12											13	14	${ }^{15}$	16		18
Na	Mg											Al	Si	P	S	Cl	Ar
22.90	${ }_{\text {[24.304, } 24.3007}^{\substack{\text { 2.as }}}$	3	4	5	6	7	8	9	10	11	12	26.98	$\underbrace{228.084,280.086]}$	30.74	${ }_{\text {[32.059, } 32.076]^{326}}$	${ }_{[35.446,554547}^{3,45}$	${ }_{\text {[3, } 3 \text {.72, } 3 \text { 39,963] }}$
	20	${ }^{21}$	$\stackrel{22}{1}$	${ }^{23}$	24	25	${ }^{26}$	27	${ }^{28}$	${ }^{29}$	30	31	32	33	34	35	${ }^{36}$
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.98	40.07844)	44.956	47.86	50.942	51.996	${ }_{54,938}$	${ }_{55} 84552$	58.933	58.93	${ }_{63546(3)}$	653832	69.723	${ }_{7265088)}$	74.92	${ }_{78.971(8)}$		83,798(2)
					42			45	${ }^{46}$		48	49	50				
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.488	87.62	88.90	${ }_{91.2242)}$	${ }_{92906}$	95.95		100.072)	10291	106.42	10787	11241	11482	118.71	121.76	${ }^{127.6033}$	126.90	13129
55	${ }^{56}$	57-71	72	${ }^{73}$	${ }^{74}$	${ }^{75}$	${ }^{76}$	77	${ }^{78}$	${ }^{79}$	80	$\stackrel{81}{1}$	${ }^{82}$	${ }^{83}$	${ }^{84}$	85	${ }^{86}$
Cs	Ba	lanthanoids	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
13291	13733		178.492)	180.95	183.84	18621	190233)	19222	195.08	199.97	20.59	${ }_{\text {20, }}^{\text {200.38 }}$	2072	208.98			
		89-103		105		107	108				${ }^{112}$	113			116		118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og

La	${ }^{58}$	$\begin{aligned} & \text { 59 } \\ & \mathrm{Pr} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	Pm	$\begin{gathered} 62 \\ \mathrm{Sm} \end{gathered}$	$\begin{aligned} & \hline 63 \\ & \mathrm{Eu} \end{aligned}$	$\begin{gathered} 64 \\ \mathrm{Gd} \end{gathered}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \end{aligned}$	$\begin{aligned} & \hline 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \mathrm{Ho} \end{aligned}$	$\begin{aligned} & \text { 68 } \\ & \text { Er } \end{aligned}$	$\begin{gathered} \hline 69 \\ \hline 1 \mathrm{~m} \\ 16.93 \end{gathered}$	$\begin{gathered} 70 \\ \mathrm{Yb} \\ \\ \hline 173.05 \\ \hline \end{gathered}$	$\begin{gathered} \hline 71 \\ \mathrm{Lu} \\ 174.97 \\ \hline \end{gathered}$
138.91	140.12	140.91	144.24		150.362)	151.96	157.253)	158.93	16250	164.93	16726			
$\begin{aligned} & 89 \\ & A_{0} \end{aligned}$	$\begin{aligned} & 90 \\ & \text { Th } \end{aligned}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \end{aligned}$	\cup^{92}	$\stackrel{93}{\mathrm{~Np}}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \end{aligned}$	$\begin{aligned} & \mathrm{Am} \\ & \hline \end{aligned}$	Cm	$\begin{aligned} & 97 \\ & \mathrm{Bk} \end{aligned}$	$\begin{aligned} & 98 \\ & \mathrm{Cf} \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{aligned} & \hline 100 \\ & \mathrm{Fm} \end{aligned}$	$\begin{aligned} & 101 \\ & \mathrm{Md} \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \end{aligned}$	$\begin{aligned} & 103 \\ & \mathrm{Lr} \end{aligned}$
	23204	231.04	${ }^{28.03}$											

