QUESTION 1: [28 MARKS]

1.1. When methanol, CH₃OH, is dissolved in water, a non-conducting solution result. When acetic acid, CH₃COOH, dissolves in water, the solution is weakly conducting and acidic in nature. Describe what happens upon dissolution in the two cases, and account for the different results.

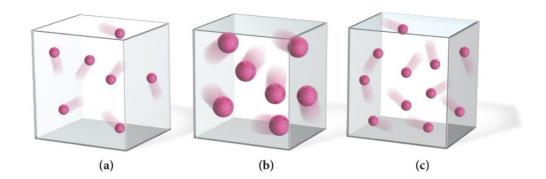
- 1.2. You come across a beaker that contains water, aqueous ammonium acetate, and a precipitate of calcium phosphate.
 - 1.2.1. Write the balanced molecular equation for a reaction between two solutions containing ions that could produce this solution. Include all phase labels (states). (4)
 - 1.2.2. Write the net ionic equation for the reaction in part 1.2.1. Include all phase labels (states).
- 1.3. The formula for the arsenate ion is AsO_4^{3-} . What is the formula for arsenous acid? (2)
- 1.4. Give the name and formula of the acid corresponding to the chlorite ion. (2)
- 1.5. Using the net ionic equation below
 - 1.5.1. Determine the volume (in mL) of a 0.150 M FeCl₃ solution needed to react completely with 20.0 mL of 0.0450 M AgNO₃ solution. (3)
 - 1.5.2. How many grams of AgCl will be formed? (3)

The net ionic equation for the reaction is

$$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(aq)$$

- 1.6. How can you tell if a reaction is an oxidation-reduction reaction? (2)
- 1.7. The following is a redox reaction

$$2KCl + MnO_2 + 2H_2SO_4 \ \rightarrow K_2SO_4 + MnSO_4 + Cl_2 + 2H_2O$$


Indicate which element is oxidized, which element is reduced as well as the oxidizing and the reducing agents. (4)

QUESTION 2: (START ON A NEW PAGE)

[24 MARKS]

- 2.1. A child receives a helium balloon in a shopping mall. When he goes outside during a snowstorm, the balloon decreases in size. Which gas law is this an example of? (2)
- 2.2. Consider a container of gas under a particular P, V, T set of conditions. Describe how the pressure would change if the volume were doubled while the absolute temperature was increasing by a factor of two. (3)
- 2.3. Rank the following gases from least dense to most dense at 1.00 atm and 298 K: SO₂, HBr, CO₂. Explain. (2)

- 2.4. Given the following reaction, $2 \text{ CH}_3\text{CHO}(g) + O_2(g) \rightarrow 2 \text{ CH}_3\text{CO}_2\text{H}(l)$, calculate the final pressure in a 250-mL reaction vessel if 0.566 moles of CH₃CHO are allowed to react with 0.323 moles of O₂ at 42 °C. (4)
- 2.5. A mixture of 8.0 mol Ne and 8.0 mol Xe are at STP in a rigid container. Both gases have the same average kinetic energy. True/False. (2)
- 2.6. A sample gas mixture occupies a volume of 1.446 liters when the temperature is 159.0 °C and the pressure is 694.8 torr. The mole fraction of methane in this sample is 0.3260. How many methane molecules are there in the sample? _____ (4)
- 2.7. Using the kinetic molecular theory, explain how raising the temperature of a gas causes it to expand at constant pressure. (2)
- 2.8. Which sample of an ideal gas has the greatest pressure? Justify your answer. Assume that mass of each particle is proportional to its size and that all the gas samples are at the same temperature. (5)

QUESTION 3: (START ON A NEW PAGE)

[27 MARKS]

(3)

- 3.1. Explain why the anion, HCO₃, can be classified as an amphoteric species.
- 3.2. For the system

 $H_3PO_4(aq) + COOH^-(aq) \rightleftharpoons HCOOH(aq) + H_2PO_4^-(aq)$

the position of equilibrium lies to the right. What is the strongest base in this reaction? (2)

- 3.3. You can obtain the pH of a 0.100 M HCl solution by assuming that the entire H_3O^+ ion comes from the HCl, in which case the pH equals log 0.100 = 1.00. But if you want the pH of a solution that is 1.00×10^{-7} M HCl, you need to account for any H_3O^+ ion coming from water. Why?
- 3.4. Calculate the concentration of an aqueous solution of Ca(OH)₂ that has a pH of 10.05. (4)
- 3.5. Which weak acid solution: $0.100 \text{ M HC}_2H_3O_2$, $0.500 \text{ M HC}_2H_3O_2$ and $0.0100 \text{ M HC}_2H_3O_2$
 - 3.5.1. has the greatest percent ionization? Explain your choice. (2)
 - 3.5.2. has the lowest pH? Explain your choice. (2)

3.6.	Which has the highest pH; a 0.1 M solution of a base with pKb = 4.5 or one w	ith $pKb = 6.5$?
	Explain your choice.	(3)
3.7.	Ethylamine, CH ₃ CH ₂ NH ₂ , has a strong, pungent odor like that of ammonia. Lil	ke ammonia, it
	is a Brønsted base. A 0.10 M solution has a pH of 11.87. Using the ICE table	e, calculate the
	K_b and pK_b values for ethylamine.	(6.5)
	3.7.1. What is the percentage ionization of the ethylamine?	(2.5)
<u>QU</u>	ESTION 4: (START ON A NEW PAGE)	[26 MARKS]
4.1.	Why do atoms only emit certain wavelengths of light when they are excited?	(Why do line
	spectra exist?)	(3)
4.2.	Describe Niels Bohr's model of the structure of the hydrogen atom.	(2)
4.3.	According to the quantum mechanical model for the hydrogen atom, which electrons are the second of the hydrogen atom, which electrons are the second of the hydrogen atom, which electrons are the second of the hydrogen atom, which electrons are the second of the hydrogen atom, which electrons are the second of the hydrogen atom, which electrons are the second of the hydrogen atom, which electrons are the second of the hydrogen atom, which electrons are the second of the hydrogen atom, which electrons are the second of the hydrogen atom, which electrons are the second of the hydrogen atom, which electrons are the second of the hydrogen atom, which electrons are the second of the hydrogen atom, which electrons are the second of the hydrogen atom.	etron transition
	would produce light with the longer wavelength: $4p\rightarrow2s$ or $4p\rightarrow2p$. Explain y	our choice. (4)
4.4.	The maximum number of electrons in an atom that can have the following exa	act same set of
	quantum numbers is	(2)
	$n=4$ $l=3$ $m_l=-2$ $m_s=+1/2$	
4.5.	Explain why every shell contains an s subshell?	(2)
4.6.	The 1st three ionization energies for calcium are 590, 1145, and 4912 kJ/mol, re-	epresenting the
	formation of Ca^+ , Ca^{2+} , and the Ca^{3+} ions. Briefly explain why there is such a l	arge change in
	the required energy to remove the 3rd electron from calcium.	(2)
4.7.	What is the Pauli exclusion principle? What effect does it have on the filling	of orbitals by
	electrons?	(3)
4.8.	What is meant by the term effective nuclear charge?	(2)
	4.8.1. How does the effective nuclear charge experienced by the valence electrons	ons of an atom
	vary going from left to right across a period of the periodic table? Explain	n. (2)
4.9.	Write an orbital diagram for the ground state of the zinc atom.	(2)
	4.9.1. Is the atomic substance diamagnetic or paramagnetic? Explain your answ	ver. (2)

END OF PAPER

PSFT0B1 DATA

 N_A (Avogadro's number) = 6.022×10^{23}

 $1 \text{ atm} = 760 \text{ mmHg} = 760 \text{ torr} = 1.01 \times 10^5 \text{ Pa} = 1.013 \text{ bar}$

R (gas constant) = 0.08206 L atm/K mol

 $R \; (gas\; constant) \; = \; 8.314\; 4621(75) \times 10^{-2} \; L \; bar \; K^{-1} \; mol^{-1}$

 P_{H2O} (25 °C) = 23.78 mmHg

h (Planck's constant) = 6.626×10^{-34} J.s

F (Faraday constant) = 9.6485×10^4 C/mol e⁻

c (speed of light) $= 2.998 \times 10^8 \text{ m/s}$

b = $2.18 \times 10^{-18} \text{ J}$

SOLUBILITY TABLE:

Anion	Solubility rule						
Mostly soluble							
Acetates, nitrates and perchlorates	All cations form soluble compounds.						
	(KClO ₄ and AgC ₂ H ₃ O ₂ slightly soluble)						
Chlorides, bromides, iodides	All cations form soluble compounds except						
	Hg ₂ ²⁺ , Ag ⁺ and Pb ²⁺ (PbCl ₂ and PbBr ₂						
	slightly soluble)						
Sulfates	All cations form soluble compounds except						
	Pb ²⁺ , Ba ²⁺ and Sr ²⁺ (Ca ²⁺ and Ag ⁺ form						
	slightly soluble compounds)						
Mostly insoluble							
Carbonates and phosphates	All cations form insoluble compounds except						
	Group IA metals and NH ₄ ⁺						
Sulfides	All cations form <i>insoluble</i> compounds except						
	Group IA and IIA metals and NH ₄ ⁺						
Hydroxides	All cations form <i>insoluble</i> compounds except						
	Group IA metals, Ba ²⁺ and Sr ²⁺ and NH ₄ ⁺						
	[Ca(OH) ₂ is slightly soluble]						

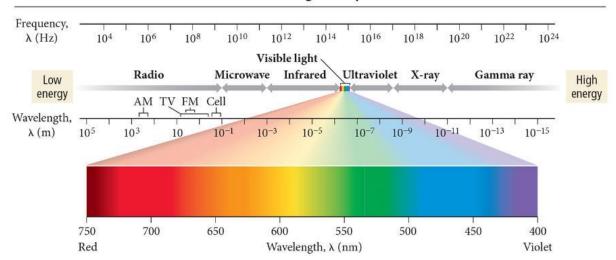
TABLE 4.1

Solubility Rules for Ionic Compounds in Water

Soluble Compounds

- 1. All compounds of the alkali metals (Group 1A) are soluble.
- 2. All salts containing NH₄⁺, NO₃⁻, ClO₄⁻, ClO₃⁻, and C₂H₃O₂⁻ are soluble.
- 3. All chlorides, bromides, and iodides (salts containing Cl⁻, Br⁻, or I⁻) are soluble except when combined with Ag⁺, Pb²⁺, and Hg₂²⁺ (note the subscript "2").
- 4. All sulfates (salts containing SO_4^{2-}) are soluble except those of Pb^{2+} , Ca^{2+} , Sr^{2+} , Hg_2^{2+} , and Ba^{2+} .

Insoluble Compounds


5. All metal hydroxides (ionic compounds containing OH⁻) and all metal oxides (ionic compounds containing O²⁻) are insoluble except those of Group 1A and of Ca²⁺, Sr²⁺, and Ba²⁺.

When metal oxides do dissolve, they react with water to form hydroxides. The oxide ion, O^{2-} , does not exist in water. For example,

$$Na_2O(s) + H_2O \longrightarrow 2NaOH(aq)$$

6. All salts that contain PO_4^{3-} , CO_3^{2-} , SO_3^{2-} , and S^{2-} are insoluble, except those of Group 1A and NH_4^+ .

The Electromagnetic Spectrum

IUPAC Periodic Table of the Elements

																	4.0
1																	18
H 1.008																	He
[1.0078, 1.0082]	2	_	Key:									13	14	15	16	17	4.0026
Li	Be		atomic number Symbol name 5 B C N O F												Ne		
6.94 [6.938, 6.997]	9.0122		conventional atomic standard atomic v	weight weight				10.81 [10.806, 10.821]	12.011 [12.009, 12.012]	14.007 [14.006, 14.008]	15.999 [15.999, 16.000]	18.998	20.180				
Na	Mg											Al	Si	15 P	16 S	CI	Ar
22.990	24.305 [24.304, 24.307]	3	4	5	6	7	8	9	10	11	12	26.982	28.085 [28.084, 28.086]	30.974	32.06 [32.059, 32.076]	35.45 [35.446, 35.457]	39.95 [39.792, 39.963]
19 K	Ca	Sc Sc	Ti	V 23	Cr	Mn	Fe	²⁷ Co	²⁸ Ni	Cu	Zn	Ga Ga	Ge	As	Se	Br	Kr
39.098	40.078(4)	44.956	47.867	50.942	51.996	54.938	55.845(2)	58.933	58.693	63.546(3)	65.38(2)	69.723	72.630(8)	74.922	78.971(8)	79.904 [79.901, 79.907]	83.798(2)
Rb	Sr	39 Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn 50	Sb	Te	53 	Xe Xe
85.468	87.62	88.906	91.224(2)	92.906	95.95		101.07(2)	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60(3)	126.90	131.29
Cs	Ba	57-71 lanthanoids	Hf	Ta	74 W	Re	Os	ir	Pt	Au	Hg	81 TI	Pb	Bi	Po	At	Rn 86
132.91	137.33		178.49(2)	180.95	183.84	186.21	190.23(3)	192.22	195.08	196.97	200.59	204.38 [204.38, 204.39]	207.2	208.98			
Fr	Ra Ra	89-103 actinoids	Rf	105 Db	Sg	107 Bh	108 Hs	109 Mt	Ds	Rg	Cn	Nh	114 FI	¹¹⁵ Mc	116 Lv	Ts	Og
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Ēr	Tm	Yb	Lu

La	Ce Ce	Pr	Nd	Pm	Sm	Eu	Gd Gd	Tb	Dy Dy	67 Ho	Er	Tm	Yb	Lu
138.91	140.12	140.91	144.24		150.36(2)	151.96	157.25(3)	158.93	162.50	164.93	167.26	168.93	173.05	174.97
Ac Ac	% Th	Pa Pa	92 U	93 N p	Pu Pu	95 Am	Cm	97 Bk	°98 Cf	99 Es	Fm	Md	102 No	103 Lr
	232.04	231.04	238.03											

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY