Question 1: 06 Marks]

The pressure of a gas is the magnitude force exerted per unit area. If the magnitude of the force magnitude is $(\mathbf{2 5 5} \pm \mathbf{5}) \mathrm{N}$ and the area of a cylindrical vessel is $(\mathbf{1 . 5 0} \pm \mathbf{0 . 0 2}) \mathbf{m}^{\mathbf{2}}$),

Calculate the pressure in SI units $\left(\mathrm{Nm}^{-2}\right)$.

Question 2: 06 Marks]

Sinusoidal waves $5.0 \mathbf{~ c m}$ in amplitude are to be transmitted along a string, under the tension of $\mathbf{1 0 0 N}$, which has a linear mass density of $\mathbf{0 . 0 4 0} \mathbf{~ k g} / \mathbf{m}$. If the source can deliver a maximum power of $\mathbf{3 0 0} \mathbf{W}$.

Calculate the highest frequency at which the source can operate.

Question 3: $\underline{\underline{15 ~ M a r k s]}}$

3.1. A $\mathbf{5 0 . 0} \mathbf{g}$ aluminium disk at $\mathbf{3 0 0}{ }^{\circ} \mathrm{C}$ is placed in $\mathbf{2 0 0} \mathbf{c m}^{\mathbf{3}}$ of ethyl alcohol at $\mathbf{1 0 . \boldsymbol { 0 } ^ { \circ }} \mathbf{C}$, and then quickly removed. The aluminium temperature is found to have dropped to $\mathbf{1 2 0}^{\boldsymbol{\circ}} \mathbf{C}$. The specific heat of alcohol is $\mathbf{2 . 4 0} \mathbf{~ k J} . \mathbf{k g}^{-1} .{ }^{\circ} \mathbf{C}^{-1}$ and density of alcohol is $\mathbf{7 9 0} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$ What is the new temperature of the ethyl alcohol?
3.2. An aircraft piston engine that burns petrol, the heat of combustion for petrol is $\mathbf{5 . 0 0} \times \mathbf{1 0}^{\mathbf{7}} \mathbf{~ J} / \mathbf{k g}$, has a power output of $\mathbf{1 . 1 0} \times \mathbf{1 0}^{5} \mathbf{W}$.
3.2.1. How much work does this engine do in $\mathbf{1 . 0 0} \mathbf{h}$?
3.2.2. This engine burns $\mathbf{3 4 . 0} \mathbf{~ k g}$ of petrol per hour. How much heat does the engine take in per hour?
3.2.3. What is the efficiency of the engine?

Question 4: $\underline{\underline{40} \text { Marks] }}$

4.1. Three charges are located at the corners of an equilateral triangle as shown in the figure.

Calculate the total electric force on the $\mathbf{7 . 0 0} \mu \mathrm{C}$ charge.
4.2. A disk of radius $\mathbf{2 . 5 0} \mathbf{~ m}$ is oriented with its normal unit vector A at $\mathbf{6 0 . 0}$ to a uniform E-field of magnitude $\mathbf{6 . 0 0} \times \mathbf{1 0}^{\mathbf{3}} \mathrm{N} / \mathrm{C}$.

Find the electric flux through the disk.
4.3. A positive charge of $\mathbf{0 . 3 0 0} \mu \mathbf{C}$ is moving from point A to B in a parallel plate with an electric field strength of $\mathbf{1 0 0} \mathbf{V} / \mathbf{m}$. The distance between points A and B is $\mathbf{1 2 . 0} \mathbf{~ c m}$ and is the same as the distance between B and C .
4.3.1. Is the work done by the electric field force or by an external force?
4.3.2. How much work is done?
4.3.3. What is the potential difference between points A and B ?
4.3.4. What is the potential difference between points B and C where C is parallel to B in the field and $12.0 \mathbf{c m}$ from B?
4.4. A $\mathbf{0 . 5 0 0} \mathbf{~ c m}$ diameter plastic sphere, used in a static electricity demonstration, has a uniformly distributed $\mathbf{4 0 . 0} \mathbf{~ p C}$ charge on its surface.

What is the electric potential near its surface
4.5. A transformer has $\mathbf{4 0 0}$ primary turns and $\mathbf{1 8 0 0}$ secondary. The input voltage is $\mathbf{1 2 . 0 V}$ and the output current is $\mathbf{3 . 0 0 A}$ when connected to a resistor.
4.5.1. What is the output voltage?
4.5.2. Determine the input current.
4.5.3. What is the value of the resistor?
4.5.4. How much power is dissipated by the resistor?

Question 5: [33 Marks]

5.1. An electron moving at $\mathbf{8 . 4 0} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{~ k m} / \mathbf{s}$ enters a uniform magnetic field of strength $\mathbf{1 1 5} \mathbf{~ m T}$. Find radius, R.
5.2. At the upper surface of the Earth's atmosphere, the time-averaged magnitude of the Poynting vector $<\mathbf{S}>=\mathbf{1 . 3 5} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{W} \cdot \mathbf{m}^{-2}$, is referred to as the solar constant. Assuming that the Sun's electromagnetic radiation is a plane sinusoidal wave,
5.2.1. Find the magnitude of the electric field.
5.2.2. Find the magnitude of the magnetic field.
5.2.3. Find the total time-averaged power received by a $\mathbf{1 . 6 5 m} \times \mathbf{1 . 0 0} \mathbf{m}$ solar panel.
5.3. The electrical power output of a large nuclear reactor facility is $\mathbf{9 5 5} \mathbf{~ M W}$. It has $\mathbf{4 5 . 0 \%}$ efficiency in converting nuclear power to electrical. With the assumption that each nuclear fission produces $\mathbf{1 9 9} \mathbf{~ M e V}$,
5.3.1. Calculate the thermal nuclear power output of in megawatts.
5.3.2. How many ${ }_{92}^{235} U$ nuclei undergo fission if the system runs for a day?
5.3.3. Calculate the mass of ${ }_{92}^{235} U$ used in one year of full-power operation.

