Question 1 [16 marks]
For questions 1.1-1.10, choose one correct answer, and make a cross (X) in the correct block.

Question	a	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					
1.10					

1.1 Classify the following function

$$
f(x)=x^{6}\left(9 x^{4}-4\right)
$$

(a) Polynomial function
(b) Power function
(c) Trigonometric function
(d) Rational function
(e) Exponential function
1.2 Evaluate the limit, if it exist.

$$
\lim _{x \rightarrow \infty} \frac{x^{7}-5}{x^{6}+10}
$$

(a) $-\infty$
(b) 0
(c) ∞
(d) $\frac{1}{5}$
(e) $-\frac{1}{5}$
1.3 Find the function $f \circ g$ and its domain if $f(x)=\frac{x-1}{x}$ and $g(x)=\frac{x}{x+5}$.
(a) $\frac{x-1}{x+5}, \quad D=(-\infty,-5) \cup(-5,0) \cup(0, \infty)$
(b) $\frac{x-1}{x+5}, \quad D=(-\infty,-5) \cup(-5, \infty)$
(c) $-\frac{5}{x}, \quad D=(-\infty,-5) \cup(-5,0) \cup(0, \infty)$
(d) $-\frac{5}{x}, \quad D=(-\infty, 0) \cup(0, \infty)$
(e) None of the above
1.4 Differentiate $g(t)=t^{5} \cos t$
(a) $g^{\prime}(x)=t^{4} \cos t-t^{5} \sin t$
(b) $g^{\prime}(x)=t^{4} \cos t+t^{5} \sin t$
(c) $g^{\prime}(x)=5 t^{4} \cos t+t^{5} \sin t$
(d) $g^{\prime}(x)=5 t^{4} \cos t-t^{5} \sin t$
(e) $g^{\prime}(x)=5 t^{4} \cos t-5 t^{4} \sin t$
1.5 Find the domain of the following function

$$
f(x)=\frac{1-e^{x^{2}}}{1-e^{36-x^{2}}}
$$

(a) $(-\infty, \infty)$
(b) $x \neq 0$
(c) $0<x<6$
(d) $x \neq \pm 36$
(e) $x \neq \pm 6$
1.6 Given $f(x)=x^{2}+6 x$. Find the intervals on which f is increasing or decreasing.
(a) Increasing on $(-\infty,-3)$; decreasing on $(-3, \infty)$
(b) Increasing on $(-6, \infty)$; decreasing on $(-\infty,-6)$
(c) Increasing on $(-3, \infty)$; decreasing on $(-\infty,-3)$
(d) Increasing on $(-\infty,-6)$; decreasing on $(-6, \infty)$
(e) No increasing or decreasing interval
1.7 Determine where the graph of the function $f(x)=x^{3}+30 x$ is concave upward (CU) and where it is concave downward (CD).
(a) CU on $(0, \infty), \mathrm{CD}$ on $(-\infty, 0)$
(b) CU on $(-\sqrt{10}, \sqrt{10}), \mathrm{CD}$ on $(-\infty,-\sqrt{10})$ and $(\sqrt{10}, \infty)$
(c) CU on $(\sqrt{10}, \infty), \mathrm{CD}$ on $(-\infty,-\sqrt{10})$
(d) CU on $(-\sqrt{10}, \infty), \mathrm{CD}$ on $(-\infty,-\sqrt{10})$
(e) CU on $(0, \sqrt{10}), \mathrm{CD}$ on $(-\sqrt{10}, 0)$
1.8 Choose an equation from the following that expresses the fact that a function f is continuous at the number 4.
(a) $\lim _{x \rightarrow 4} f(x)=-\infty$
(b) $\lim _{x \rightarrow 4} f(x)=f(4)$
(c) $\lim _{x \rightarrow 4} f(x)=\infty$
(d) $\lim _{x \rightarrow 0} f(x)=f(4)$
(e) $\lim _{x \rightarrow 0} f(x)=4$
1.9 Find the equation of the tangent line to the graph of the function at the indicated point

$$
\begin{equation*}
f(x)=\frac{2}{x} \tag{2,1}
\end{equation*}
$$

(a) $y=2 x+2$
(b) $y=-2 x+2$
(c) $y=-\frac{1}{2} x+2$
(d) $y=\frac{1}{2} x+2$
(e) None of the above
1.10 Find $\frac{d y}{d x}$ by implicit differentiation

$$
\begin{equation*}
e^{x y}-x^{9}+y^{9}=3 \tag{2}
\end{equation*}
$$

(a) $\frac{9 x^{8}-x e^{x y}}{y e^{x y}+9 y^{8}}$
(b) $\frac{9 y^{8}-y e^{x y}}{x e^{x y}+9 x^{8}}$
(c) $\frac{9 y^{8}-x e^{x y}}{y e^{x y}+9 x^{8}}$
(d) $\frac{9 x^{8}-y e^{x y}}{x e^{x y}+9 y^{8}}$
(e) None of the above

Question 2 [14 marks]
2.1 Sketch the graph of an example of a function f that satisies all of the given conditions.

$$
\lim _{x \rightarrow-1^{-}} f(x)=0 ; \quad \lim _{x \rightarrow-1^{+}} f(x)=1, \quad \lim _{x \rightarrow 2} f(x)=3 \quad f(-1)=2, \quad f(2)=1
$$

2.2 From the graph of g, state the numbers at which g is discontinuous and explain why.

2.3 Evaluate the limit or show that it does not exist

$$
\lim _{t \rightarrow 0}\left(\frac{1}{t \sqrt{1+t}}-\frac{1}{t}\right)
$$

2.4 For what value of the constant c is the function f continuous on $(-\infty, \infty)$?

$$
f(x)= \begin{cases}c x^{2}+2 x & \text { if } x<2 \\ x^{3}-c x & \text { if } x \geq 2\end{cases}
$$

Question 3 [12 marks]
3.1 Find the derivative of this function using the definition of derivative.

$$
f(x)=\frac{x^{2}-1}{2 x-3}
$$

State the domain of $f(x)$ and $f^{\prime}(x)$
3.2 Use implicit differentiation to find an equation of the tangent line to this curve at the given point

$$
2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right), \quad(3,1)
$$

3.3 Find the antiderivative f of $f^{\prime \prime}$ that satisfies the given condition.

$$
f^{\prime \prime}=-2+12 x-12 x^{2}, \quad f(0)=4, \quad f^{\prime}(0)=12
$$

Question 4 [18 marks]
4.1 A manufacturer has been selling 1000 flat-screen TVs a week at R450 each. A market survey indicates that for each R10 rebate offered to the buyer, the number of TVs sold will increase by 100 per week.
(a) Find the demand function.
(b) How large a rebate should the company offer the buyer in order to maximize its revenue?
(c) If its weekly cost function is $C(x)=68000+150 x$, how should the manufacturer set the size of the rebate in order to maximize its profit?
4.2 A runner sprints around a circular track of radius 100 m at a constant speed of $7 \mathrm{~m} / \mathrm{s}$. The runner's friend is standing at a distance 200 m from the center of the track. How fast is the distance between the friends changing when the distance between them is 200 m ?
(a) Make a sketch for the information given
(b) Find an equation for the distance between the friends and any associated equation
(c) Solve the equation(s) in (b) to get how fast the distance between the friends is changing when the distance between them is 200 m

