Question 1 [12 marks]

For questions 1.1 - 1.12, choose the correct answer, and make a cross (X) in the corresponding block.

Question	a	b	с	d	e
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					
1.10					
1.11					
1.12					

1.1 Select the formula that is the negation of $p \to (q \lor r)$.

- (a) $\neg p \rightarrow \neg (q \lor r)$
- (b) $p \land \neg (q \lor r)$
- (c) $\neg p \land (q \lor r)$
- (d) $\neg (q \lor r) \rightarrow \neg p$
- (e) None of the above.

1.2 Select the correct natural language translation of the predicate formula: (1)

$$(\forall y \in \mathbb{Q})(y^2 < 0)$$

(1)

- (a) The square of any rational number is positive.
- (b) There are rational numbers with negative squares.
- (c) Every rational number has a negative square.
- (d) Some rational numbers are less than zero.
- (e) None of the above.

1.3 If
$$f(x) = \frac{1}{x-3}$$
 and $g(x) = 2x + 4$, then $g \circ f =$: (1)
(a) $\frac{1}{2x+1}$
(b) $x-3$
(c) $\frac{2x+4}{x-3}$
(d) $\frac{2}{x-3} + 4$
(e) None of above.

1.4 Consider the summation: $\frac{7}{8} - \frac{8}{9} + \frac{9}{10} - \frac{10}{11} + \frac{11}{12} - \frac{12}{13}$.

Select the correct sigma notation representation of the above summation: (1)

(a)
$$\sum_{i=0}^{6} \frac{7+i}{8+i}(-1)^{i}$$
.
(b) $\sum_{i=1}^{6} \frac{7+i}{8+i}(-1)^{i+1}$.
(c) $\sum_{i=0}^{5} \frac{7+i}{8+i}(-1)^{i+2}$.
(d) $\sum_{i=1}^{6} \frac{7+i}{8+i}(-1)^{i}$.

- (e) None of the above
- 1.5 Consider the following four functions: (i) $f(x) = \frac{\sqrt{x+1}}{x-1}$ (ii) $f(x) = \frac{ex^2+1}{x+3}$

(iii)
$$f(x) = \frac{x^e + e^x}{x^2 + 3x + 1}$$
 (iv) $f(x) = \frac{\sqrt{2x^3 - 2x^2 + 3}}{x^2 + x - 1}$

(1)

(1)

Which of the functions above are rational functions?

- (a) (ii), (iii) and (iv) only
- (b) (ii) and (iv) only
- (c) (i) and (iii) only
- (d) (ii) only
- (e) None of the above combinations are correct.

1.6 The domain of the function $y = \arctan x$ is:

(a)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

- (b) $(-\infty,\infty)$
- (c) $[0,\pi]$
- (d) [-1,1]
- (e) None of the above.

1.7
$$\frac{d}{dx} (10^{\cot x}) =$$
(a) (ln 10) $10^{\csc^2 x}$
(b) (ln 10) $10^{-\csc^2 x}$

- (c) $(\ln 10) 10^{\cot x} \csc^2 x$
- (d) $-(\ln 10) 10^{\cot x} \csc^2 x$
- (e) None of the above.

(1)

1.8 Differentiate $y = \log_5 (1 + 2x)$.

(a)
$$y' = \frac{1}{(1+2x)(\ln 5)}$$

(b) $y' = \frac{2}{(1+2x)(\ln 5)}$
(c) $y' = \frac{2\ln 5}{1+2x}$
(d) $y' = \frac{1+2x}{\ln 5}$
(e) None of the above.

1.9 Calculate y' if $y = x \tan^{-1}(4x)$. (1)

(a)
$$y' = \frac{4x}{1+16x^2} + \tan^{-1}(4x)$$

(b) $y' = \frac{x}{1+16x^2} + \tan^{-1}(4x)$
(c) $y' = \frac{4}{1+16x^2} + x \tan^{-1}(4x)$
(d) $y' = \frac{1}{1+16x^2} + (4x) \tan^{-1}(4x)$
(e) None of the above.

- 1.10 Suppose F(x) is an antiderivative of f(x) and an antiderivative of g(x). Which of the following statements are always true? (1)
 - (i) g'(x) = F(x) and f'(x) = F(x).
 - (ii) f'(x) = g(x)

(iii)
$$g(x) = f(x)$$
.

- (iv) F'(x) = g(x) and F'(x) = f(x)
- (a) Only (i).
- (b) (i) and (ii).
- (c) (i) and (iii).
- (d) (ii) and (iv).
- (e) (iii) and (iv).

1.11 Find the value of the integral:

 $\int_{1}^{4} (1+2x) \, dx. \tag{1}$

- (a) 18
- (b) 12
- (c) 9
- (d) 6
- (e) None of the above.

- 1.12 Select an appropriate substitution that can be used to evaluate the indefinite integral $\int \tan x \ln(\cos x) \, dx$ and will yield a polynomial integrand. (1)
 - (a) $u = \tan x$
 - (b) $u = \ln(\cos x)$
 - (c) $u = \cos x$
 - (d) $u = \sin x$
 - (e) None of the above.

Question 2 [2 marks]

The solution set for the inequality $|x - b| \ge d$ is $(-\infty, -2] \cup [20, \infty)$. Calculate the values of b and d. (2)

Question 3 [2 marks]

If $\sin \theta + \cos \theta = \sqrt{2}$ prove that $\sin 2\theta = 1$. [Hint: Square both sides of the given equation.] (2)

Question 4 [2 marks]

Give a counterexample to show that the following equation is not always true. You must show that the equation fails for your counterexample. (2)

$$\left(\sum_{i=1}^n a_i\right)^2 = \sum_{i=1}^n a_i^2.$$

Question 5 [3 marks]

Complete the truth table for the formula $p \to (q \vee \neg p)$ and then determine whether it is a tautology. (3)

p	q	

Question 6 [2 marks]

Write the following statement in predicate language: (2)

Every real number is negative and greater than π .

Question 7 [2 marks]

Prove that if $x \in \mathbb{Z}$ and $3 \mid x$, then $9 \mid (x^2 - 12x)$.

(2)

Question 8 [3 marks]

Use known logical equivalences to show that $\neg(p \rightarrow \neg(q \lor \neg p)) \equiv p \land q.$ (3)

<u>Question 9</u> [2 marks] Let $h(x) = \frac{1}{\sqrt{x^2 - 6x - 7}}$. Find the domain of h and give your answer in interval notation. (2)

Question 10 [2 marks]

Sketch the graph of the function $f(x) = (x-1)^2 + 1$ using the appropriate transformations. Your answer should include 3 sketches. Indicate all intercepts clearly. (2)

<u>Question 11</u> [2 marks] Simplify: sec $\left(\arctan\left(-\frac{4}{3}\right)\right)$.

(2)

Question 12 [2 marks]

Find the inverse of the function $f(x) = x^2$, $x \leq 0$, and write it in the form $f^{-1}(x)$. (2)

Question 13 [3 marks]

Show that the equation $0 = x^3 - x - 1$ has a root in the interval (1, 2). (3)

Question 14 [4 marks]

Consider the function:

(i) $\lim_{x \to 3^-} f(x)$

(a) Find

$$f(x) = \begin{cases} x^2 - 8 & \text{if } x < 3\\ x^3 - 27 & \text{if } x \ge 3 \end{cases}$$
(1)

(ii)
$$\lim_{x \to 3^+} f(x) \tag{1}$$

(b) What does this tell us about $\lim_{x \to 3} f(x)$? (1)

(c) Is f(x) continuous at x = 3? Motivate your answer. (1)

(4)

$\underline{\text{Question 15}} [5 \text{ marks}]$

(a) Prove the following theorem:

If a function f is differentiable at x = a, then it is continuous at a.

(b) Is the converse of the above theorem true? Justify your answer. (1)

 $\underline{\text{Question 16}} \ [2 \text{ marks}]$

Find the horizontal asymptotes of the curve $y = \frac{2e^x}{e^x - 5}$. (2)

 $\underline{\text{Question } 17} \ [2 \text{ marks}]$

Find	$\lim_{x \to 0^+} \left[\ln x - \ln \left(\sin x \right) \right]$	without using L'Hospital's Rule.	(2)
------	---	----------------------------------	-----

$\underline{\text{Question 18}} \; [4 \text{ marks}]$

Find
$$\frac{dy}{dx}$$
 if $e^{\frac{x}{y}} = x^4 + y^4$. (4)

 $\underline{\text{Question 19}} [3 \text{ marks}]$

Use logarithmic differentiation to find y' if: $y = x^{\cosh x - 1}$. (3)

Question 20 [3 marks]

Evaluate:
$$\lim_{x \to 0^+} \left(\frac{1}{\sin x} - \frac{1}{x} \right).$$
(3)

Question 21 [2 marks]

Let $F(x) = \int_{2}^{x} \frac{1}{t^2} dt$. Find an equation of the tangent line to the curve y = F(x) at the point with x-coordinate 2. (2)

 $\underline{\text{Question } 22} \ [2 \text{ marks}]$

Evaluate the indefinite integral:

$$\int \left(\frac{1}{\sqrt{1-x^2}} - \frac{1}{x} + \cosh x\right) \, dx. \tag{2}$$

 $\underline{\text{Question } 23} \ [4 \text{ marks}]$

Evaluate the definite integral:

$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos^2 x \sin x \, dx.$$
 (4)