Question 1 [20 marks]
For questions 1.1-1.10, choose one correct answer, and make a cross (X) in the correct block.

Question	a	b	c	d	e
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					
1.10					

1.1 Give the polar coordinates of the point $(-1 ; 1)$ where $r>0$ and $0 \leq \theta \leq 2 \pi$.
(a) $\left(\sqrt{2} ;-\frac{\pi}{4}\right)$
(b) $\left(\sqrt{2} ; \frac{\pi}{2}\right)$
(c) $\left(\sqrt{2} ; \frac{3 \pi}{4}\right)$
(d) $\left(\sqrt{2} ;-\frac{\pi}{2}\right)$
(e) None of the above.
1.2 Which of the following equations are linear?
(i) $x+5 \sqrt{y}-2 z=1$
(ii) $x+3 y+x z=2$
(iii) $x=-7 y+3 z$
(iv) $e^{x}-z=4$
(v) $\pi x+\sqrt{2} y+\frac{1}{3} z=7^{1 / 3}$.
(a) (i), (iii) and (v)
(b) (ii) and (iii)
(c) (iii) only
(d) (iii) and (iv)
(e) None of the above.
1.3 The arc length of $y=2 e^{x} \sin x$ on the interval $\left[0, \frac{3 \pi}{2}\right]$ equals?
(a) $\int_{0}^{\frac{3 \pi}{2}} \sqrt{1+4 e^{x}(1+\sin 2 x)} d x$
(b) $\int_{0}^{\frac{3 \pi}{2}} \sqrt{1+2 e^{x}(\sin x+\cos x)} d x$
(c) $\int_{0}^{\frac{3 \pi}{2}} \sqrt{1+4 e^{2 x}(1+\sin 2 x)} d x$
(d) $\int_{0}^{\frac{3 \pi}{2}} \sqrt{1+4 e^{2 x}(1-\sin x)^{2}} d x$
(e) None of the above.
1.4 The correct trigonometric substitution for $\int \frac{x^{3}}{\sqrt{4+x^{2}}} d x$ leads to:
(a) $\int 4 \tan ^{3} \theta d \theta$
(b) $\int 8 \tan ^{3} \theta d \theta$
(c) $\int 4 \tan ^{3} \theta \sec \theta d \theta$
(d) $\int 8 \tan ^{3} \theta \sec \theta d \theta$
(e) None of the above.
1.5 Which of the integrals below gives the area of the surface obtained when the region under the curve $y=\frac{2}{x}, x \in[1,5]$ is rotated about the x-axis?
(a) $4 \pi \int_{1}^{5} x^{-3} \sqrt{x^{4}+4} d x$
(b) $2 \pi \int_{1}^{5} \frac{\sqrt{x^{2}-4}}{x^{3}} d x$
(c) $4 \pi \int_{1}^{5} \frac{\sqrt{x^{2}+4}}{x^{5}} d x$
(d) $2 \pi \int_{1}^{5} x \sqrt{1+\frac{4}{x^{2}}} d x$
(e) None of the above.
1.6 The correct partial fraction decomposition for $\frac{x+1}{\left(x^{2}-4\right)\left(x^{2}+2\right)}$ is:
(a) $\frac{A}{x^{2}-4}+\frac{B x+C}{x^{2}+2}$
(b) $\frac{A}{x-2}+\frac{B}{x+2}+\frac{C}{x^{2}+2}$
(c) $\frac{A}{x-2}+\frac{B}{x+2}+\frac{C x+D}{x^{2}+2}$
(d) $\frac{A x}{x^{2}-4}+\frac{B x+C}{x^{2}+2}$
(e) None of the above.
1.7 The point on the curve $y=\sqrt{x}$ that is closest to the point $(2,0)$ is:
(a) $\left(\sqrt{\frac{3}{2}}, \frac{3}{2}\right)$
(b) $\left(\frac{3}{2}, \sqrt{\frac{3}{2}}\right)$
(c) $\left(\sqrt{\frac{5}{2}}, \frac{5}{2}\right)$
(d) $\left(\sqrt{\frac{1}{2}}, \frac{1}{2}\right)$
(e) None of the above.
1.8 Suppose $y=\sqrt{3 x+1}$ where x and y are functions of t. If $\frac{d x}{d t}=10$, find $\frac{d y}{d t}$ when $x=8$. (2)
(a) 1
(b) 5
(c) 3
(d) 10
(e) None of the above.
$1.9 \sum_{k=0}^{n}\binom{n}{k} 9^{k}$ is equal to:
(a) 10^{n}
(b) 9^{n}
(c) 9^{k}
(d) 10^{k}
(e) None of the above.
1.10 If two equations have no values to satisfy both equations, then this is called:
(a) Consistent system
(b) Inconsistent system
(c) Solution system
(d) Constant system
(e) None of the above.

Question 2 [7 marks]
(a) Set up, but do not evaluate, an integral for the length of the curve: $y=\ln (g(x)-1), g(x)>1, x \in[4,9]$.
(b) The curve $y=\sqrt{1+e^{x}}, 0 \leq x \leq 1$, is rotated about the x-axis. Find the area of the resulting surface.

Question 3 [3 marks]

Find all the points on the parametric curve shown below with slope equal to $\frac{1}{\sqrt{3}}$.

$$
x=a \cos t, \quad y=a \sin t
$$

Question 4 [6 marks]
Evaluate each of the following integrals if they exist.
(a) $\int_{1}^{e} x^{2} \ln (4 x) d x$.
(b) $\int_{7}^{5} \frac{d x}{\sqrt{7-x}}$.

Question 5 [7marks]
(a) Solve the differential equation shown below:

$$
\begin{equation*}
y^{\prime}=\frac{1+2 y^{2}}{\left(x^{2}-1\right) x y}, \quad x>1 . \tag{3}
\end{equation*}
$$

(b) Solve the differential equation shown below:

$$
\begin{equation*}
\frac{d y}{d x}+f^{\prime}(x) y=f^{\prime}(x) \tag{2}
\end{equation*}
$$

(c) Suppose $f^{\prime}(x)=\sec ^{2} x$ and that $y\left(\frac{\pi}{4}\right)=0$. Find a solution to the differential equation from Question 5b.

Question 6 [7 marks]
(a) Sketch the parametric curve below and indicate with an arrow the direction in which the curve is traced as t increases:

$$
\begin{equation*}
x(t)=\frac{2}{t}, y(t)=-\frac{4}{t^{2}}, 1 \leq t \leq 4 \tag{3}
\end{equation*}
$$

(b) Set up, but do not evaluate, an integral for the arc length of the curve:

$$
\begin{equation*}
x(t)=\frac{3}{t}, \quad y(t)=\frac{9}{t^{2}}, \quad 1 \leq t \leq 4 . \tag{2}
\end{equation*}
$$

(c) Set up, but do not evaluate, an integral for the surface area obtained by rotating the curve shown below about the y-axis. Simplify the integrand as far as possible.

$$
x=3 t^{2}, \quad y=2 t^{3}, \quad 0 \leq t \leq 5
$$

Question 7 [10 marks]
(a) Give a system of linear equations corresponding to the given augmented matrix:

$$
\left[\begin{array}{cccc}
3 & 0 & 1 & 5 \\
0 & -1 & 4 & 2 \\
5 & -2 & 1 & 7
\end{array}\right]
$$

(b) Find the augmented matrix for the given system of linear equations:

$$
\begin{gathered}
x_{2}-x_{6}=7 \\
x_{3}=-1
\end{gathered}
$$

(c) Solve the system below using Gauss-Jordan Elimination.

$$
\begin{gathered}
2 x+3 y=-3-2 z \\
y=-x-z \\
-x+2 y+1=3 z
\end{gathered}
$$

Question 8 [5 marks]
Use Binomial Theorem to find the coefficient of x^{3} in the expansion of $(x-3)(2 x+1)^{6}$.

Question 9 [5 marks]
Consider the matrices shown below:

$$
B=\left[\begin{array}{cc}
4 & -1 \\
0 & 2
\end{array}\right] \quad C=\left[\begin{array}{lll}
1 & 4 & 2 \\
3 & 1 & 5
\end{array}\right]
$$

Find B^{-1} and the value of K such that:

$$
B^{-1} C=\frac{4}{5 K}\left[\begin{array}{ccc}
10 & 18 & 18 \\
24 & 8 & 40
\end{array}\right]
$$

