Determine whether the following statements are TRUE or FALSE. Motivate the statement if TRUE; provide a counterexample if FALSE.
(a) If a matrix A has more rows than columns, then the dimension of the row space is greater than the dimension of the column space.
(b) If A is a square matrix and $A \bar{x}=\lambda \bar{x}$ for some nonzero scalar λ, then \bar{x} is an eigenvector of A.
(c) If A is an $n \times n$ matrix, then $\langle\bar{u}, \bar{v}\rangle=A \bar{u} \cdot A \bar{v}$ defines an inner product on \mathbb{R}^{n}.
(d) If A is a square matrix, then $A A^{T}$ and $A^{T} A$ are orthogonally diagonalizable.
(e) There is exactly one linear transformation $T: V \rightarrow W$ such that $T(-\bar{v})=-T(\bar{v})$ for all \bar{v} in V.

ASMA2B2 2022 Paper C

Question 2

Find the rank of A and nullity of A^{T} where

$$
A=\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 0 & 4 \\
2 & 2 & 6 & 8
\end{array}\right]
$$

Let A be an $n \times n$ matrix. Prove that λ is an eigenvalue of A if and only if it satisfies the equation

$$
\operatorname{det}(\lambda I-A)=0
$$

ASMA2B2 2022 Paper C

Question 4

Suppose that the characteristic polynomial of some matrix A is found to be

$$
p(\lambda)=(\lambda-1)(\lambda-3)^{2}(\lambda-4)^{3} .
$$

(a) What can you say about the dimensions of the eigenspaces of A ?
(b) If A is diagonalizable, what can you say about the dimensions of the eigenspaces of A ?

Let $\bar{x}=\left(x_{1}, x_{2}\right)$ and $\bar{y}=\left(y_{1}, y_{2}\right)$ be in \mathbb{R}^{2}. Show whether or not

$$
\langle\bar{x}, \bar{y}\rangle=2 x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+5 x_{2} y_{2}
$$

is an inner product on \mathbb{R}^{2}.

Let W be a subspace of an inner product space V. Show that W^{\perp} is a subspace of V.

ASMA2B2 2022 Paper C

Question 7

Prove, or disprove, that if A is an $m \times n$ matrix such that $A^{T} A=I$ then A is orthogonal.

Find an orthogonal change of variables that eliminates the cross product terms in the quadratic form Q, and express Q in terms of the new variables.

$$
Q=5 x_{1}^{2}+4 x_{1} x_{2}+2 x_{2}^{2}
$$

Determine whether the following transformations are linear. If they are, prove it, if not provide a counterexample to one of the properties.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, with $T(x, y)=\left(x^{2}, y^{2}\right)$.
(b) Let V be the vector space of functions from \mathbb{R} to \mathbb{R}, where addition and scalar multiplication are defined pointwise, i.e. $(f+g)(x)=f(x)+g(x)$ and $(\alpha f)(x)=\alpha f(x)$. Then, let $T: V \rightarrow \mathbb{R}^{2}$, with

$$
T(f)=\left[\begin{array}{c}
f(0) \\
f(1)+1
\end{array}\right] .
$$

ASMA2B2 2022 Paper C

Prove that every real n-dimensional vector space is isomorphic to \mathbb{R}^{n}.

Let $T: \mathcal{P}_{1} \rightarrow \mathbb{R}^{2}$ be the transformation defined by the formula

$$
T(p(x))=(p(0), p(1))
$$

Find $T(1-2 x)$ and $T^{-1}((2,3))$.

Let $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$ be the matrix for $T: \mathcal{P}_{1} \rightarrow \mathbb{R}^{2}$ with respect to the bases $B=\{1+x, 1-x\}$ and $C=\{(1,1),(-1,1)\}$.
(a) Find $[T(-1-3 x)]_{C}$.
(b) Hence, find $T(-1-3 x)$.

