Question 1 [20 marks]
For questions 1.1-1.10, choose one correct answer, and make a cross (X) in the correct block.

Question	a	b	c	d	e
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					
1.10					

1.1 The correct partial fraction decomposition for $\frac{x+1}{(x-1)^{2}\left(x^{2}+2\right)}$ is:
(a) $\frac{A}{(x-1)^{2}}+\frac{B x+C}{x^{2}+2}$
(b) $\frac{A}{(x-1)^{2}}+\frac{B}{x^{2}+2}$
(c) $\frac{A x}{(x-1)^{2}}+\frac{B x+C}{x^{2}+2}$
(d) $\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C x+D}{x^{2}+2}$
(e) None of the above.
1.2 The second term in the expansion of $(2 x-y)^{4}$ is:
(a) $32 x^{3} y$
(b) $4 x^{3} y$
(c) $-32 x^{3} y$
(d) $-8 x^{2} y^{2}$
(e) None of the above.
$1.3 \int_{0}^{1} e^{x} d x$ equal:
(a) e
(b) $\frac{1}{2} e^{2}-\frac{1}{2}$
(c) $e-1$
(d) divergent
(e) None of the above.
1.4 Which equation is linear?
(i) $x+5 y-2 z=1$
(ii) $x+3 y+x z=2$
(iii) $x=-7 y+3 z$
(iv) $e^{x}-z=4$
(v) $\pi x+\sqrt{2} y+\frac{1}{3} z=7^{1 / 3}$
(a) (i), (iii) and (v)
(b) (ii) and (iii)
(c) (iii)
(d) (iii) and (iv)
(e) None of the above.
1.5 The correct trigonometric substitution for $\int \frac{x^{3}}{\sqrt{9+x^{2}}} d x$ leads to:
(a) $\int 9 \tan ^{3} \theta d \theta$
(b) $\int 27 \tan ^{3} \theta d \theta$
(c) $\int 9 \tan ^{3} \theta \sec \theta d \theta$
(d) $\int 27 \tan ^{3} \theta \sec \theta d \theta$
(e) None of the above.
1.6 The length of the edge of a cube is decreasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. We want to find the rate of change of the volume of the cube. If s is used to denote the edge of the cube, what two equations can be used to solve this problem?
(a) $V=6 s^{2}, \frac{d V}{d t}=\frac{d V}{d t} \frac{d s}{d t}$.
(b) $V=6 s^{2}, \frac{d V}{d t}=\frac{d V}{d s} \frac{d s}{d t}$.
(c) $V=s^{3}, \frac{d V}{d t}=\frac{d V}{d s} \frac{d s}{d t}$.
(d) $V=s^{3}, \frac{d s}{d t}=\frac{d V}{d s} \frac{d s}{d t}$.
(e) None of the above.
1.7 Consider the surface of revolution formed by revolving the curve $y=\frac{1}{x}, 1 \leq x \leq a$, about the x-axis. The surface area is:
(a) $2 \pi \int_{1}^{a} \frac{d x}{x}$
(b) $2 \pi \int_{1}^{a} \frac{\sqrt{1+x^{4}}}{x^{3}} d x$
(c) $\int_{1}^{a} \frac{d x}{x^{2}}$
(d) $2 \pi \int_{1}^{a} \sqrt{1+\frac{1}{x^{4}}} d x$
(e) None of the above.
1.8 Which integral below gives the arc length of the curve $y=\tan x$ on the interval $\left[0, \frac{\pi}{4}\right]$.
(a) $\int_{0}^{\frac{\pi}{4}} \sqrt{1-\sec ^{4} x} d x$
(b) $\int_{0}^{\frac{\pi}{4}} \sqrt{1+\sec ^{4} x} d x$
(c) $\int_{0}^{1} \sqrt{\frac{\pi}{4}+\sec ^{4} x} d x$
(d) $\int_{0}^{\frac{\pi}{4}} \sqrt{1+\tan ^{2} x} d x$
(e) None of the above.
1.9 If $y=\frac{x^{3}}{x^{3}+1}$ and $\frac{d y}{d x}=\frac{3 x^{2}}{\left(x^{3}+1\right)^{2}}$ then the critical number(s) of the function y is:
a) 0 and -1
b) -1 only
c) 0 and 1
d) 0 only
e) None of the above.
1.10 The area of the region bounded by $y=\sqrt{x}, y=0$ and $x=4$ is:
a) $\frac{16}{3}$
b) 12
c) $\frac{3}{16}$
d) 18
e) None of the above.

Question 2 [13 marks]
Consider the function $f(x)=\frac{x^{2}-1}{x^{2}-4}$. Given that $f^{\prime}(x)=\frac{-6 x}{\left(x^{2}-4\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{6\left(3 x^{2}+4\right)}{\left(x^{2}-4\right)^{3}}$.
Complete the following for the function f.
(a) Domain.
(b) Intercepts.
(c) Asymptotes.
(d) Interval of increasing and decreasing.
(e) Local maximum and minimum values.
(f) Concavity.
(g) Sketch $f(x)$.

Question 3 [10 marks]
(a) Set up, but do not evaluate, an integral for the length of the curve below, simplifying as far as possible.

$$
\begin{equation*}
y=\ln \left(1-x^{2}\right), \quad 0 \leq x \leq \frac{1}{4} \tag{2}
\end{equation*}
$$

(b) The curve $y=\frac{1}{4}\left(x^{2}-2 \ln x\right), 1 \leq x \leq 4$, is rotated about the y-axis. Find the area of the resulting surface.
(c) Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by $y=x^{2}+1, y=0, x=0$ and $x=1$ about the y-axis. Include a sketch of the region.

Question 4 [6 marks]
Evaluate each of the following integrals if they exist.
(a) $\int_{1}^{e} \frac{\ln x}{x^{2}} d x$.
(b) $\int_{3}^{2} \frac{d x}{\sqrt{3-x}}$.

Question 5 [7 marks]
(a) Sketch the parametric curve below and indicate with an arrow the direction in which the curve is traced as t increases.

$$
\begin{equation*}
x(t)=\frac{2}{t}, y(t)=\frac{4}{t^{2}}, 1 \leq t \leq 4 \tag{3}
\end{equation*}
$$

(b) Set up, but do not evaluate, an integral for the arc length of the curve below.

$$
x(t)=\frac{2}{t}, y(t)=\frac{4}{t^{2}}, 1 \leq t \leq 4
$$

(c) Set up, but do not evaluate, an integral for the surface area obtained by rotating the curve below about the y-axis.

$$
\begin{equation*}
x=3 t^{2}, y=2 t^{3}, 0 \leq t \leq 5 \tag{2}
\end{equation*}
$$

Question 6 [5 marks]
Expand the expression $\left(\sqrt{y}-\frac{1}{3}\right)^{4}$ using the Binomial Theorem. Simplify all the coefficients and exponents.

Question 7 [9 marks]
(a) Give a system of linear equations corresponding to the given augmented matrix:

$$
\left[\begin{array}{cccc}
3 & 0 & 0 & 5 \\
0 & 1 & 4 & 0 \\
0 & -2 & -1 & 7
\end{array}\right]
$$

(b) Find the augmented matrix for the given system of linear equations:

$$
\begin{gathered}
x_{1}-x_{5}=7 \\
x_{2}=-1
\end{gathered}
$$

(c) Solve the system using Gauss-Jordan Elimination.

$$
\begin{gathered}
x+z=6 \\
-3 y+z=7 \\
2 x+y+3 z=15
\end{gathered}
$$

