Exam information and instructions

Kemp				
Sinayskyi				
3 3				
				I
	Sinayskyi			

Surname & initials:

Marks: 50

Duration: 120 minutes

Question	Points	Score
1	15	
2	10	
3	10	
4	5	
5	10	
Total:	50	

(5)

(5)

Question 1 (15 marks)

This question concerns the Bloch sphere and the rotation matrices.

- (a) Calculate the eigenvectors of the three Pauli matrices, X, Y, Z. Draw the Bloch sphere and indicate the positions of each eigenvector on the Bloch sphere.
- (b) Rotate the vector (6)

$$\frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$$

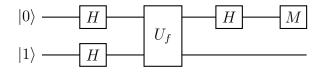
by an angle $\pi/2$ about the z-axis. Where is this new vector on the Bloch sphere?

(c) What is the net effect of the product $R_x(\pi/2)R_x(2\pi/5)$? (3)

Question 2 (10 marks)

The Deutsch Algorithm, as shown below for two qubits, can be used to determine global properties of a function, f. For example, it can determine if the function $f:[0,1] \longrightarrow [0,1]$ is balanced or constant.

- (a) Calculate the final state of the system if the function f is constant, just before the measurement, M?
- (b) Explain how the measurement M on the top qubit will determine whether f is balanced or constant. (4)



Question 3 (10 marks)

This question concerns the Schmidt decomposition.

(a) What is the Schmidt decomposition for the state

$$|\psi\rangle = \frac{1}{2} (|00\rangle - |01\rangle - |10\rangle + |11\rangle)?$$

(b) What is the Schmidt decomposition for the state

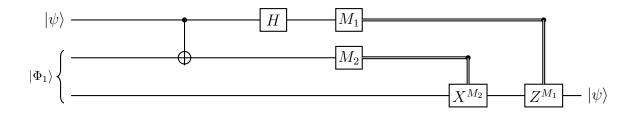
$$|\psi\rangle = \frac{1}{2} (|00\rangle - i |01\rangle - i |10\rangle - |11\rangle)?$$

Question 4 (5 marks)

Draw the quantum circuit necessary to produce the Bell state $|\Phi_{00}\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$. How should this circuit be modified to then produce the Bell state $|\Phi_{01}\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$? Draw this circuit.

Question 5 (10 marks)

The following circuit implements the quantum teleportation algorithm.



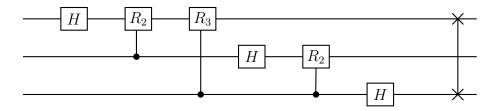
(3)

The top two registers belong to Alice and the bottom one belongs to Bob. Alice and Bob share the entangled state $|\Phi_1\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$. Alice wants to transmit the qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ to Bob using the above circuit.

- (a) Calculate the overall state just before Alice performs the measurements M_1 and M_2 . (7)
- (b) Say Alice performs a measurement on her two qubits and obtains the result $M_1 = 1, M_2 = 1$. What is the probability of obtaining this result? Describe the transformation that Bob must now apply to his qubit to obtain the desired state ψ .

Bonus Question

For an extra 5 marks, consider the circuit below,



and calculate the output state for the input state $|j_1j_2j_3\rangle = |100\rangle$.