QUE	STION 1	[11]
1.1.	Define an oxo acid and give an example of one such acid.	[2]
1.2.	Distinguish between an Interchange and dissociative mechanism for substitu	ution on
	metal ions.	[4]
1.3.	Define the trans-effect.	[2]
1.4.	How can an inner sphere redox reaction be distinguished from an outer redox reaction?	sphere
		[3]
QUE	STION 2	[20]
2.1.	For the following complexes, give the systematic (IUPAC) names, and indic electron configuration of the metal ion and give the geometry (shape) of the c	
	(a) <i>trans</i> -[Co(en) ₂ I(H ₂ O)](NO ₃) ₂	
	(b) [Co(NH ₃) ₅]-NH ₂ -[Co(NH ₃) ₄ (H ₂ O)]Cl ₅	[8]
2.2.	Write the structural formula for the following complexes:(a) diamminesilver(I) dicyanoargentate(I)(b) Tetrahydroxozincate(II)	
		[4]
2.3.	 Identify the types of isomerism and write the formulas that are possible complexes with the following molecular formulas: (a) [Pt(PEt₃)₃(SCN)] (b) [CoBr(NH₃)₅](SO₄) (c) [FeCl₂]-6H₂O 	for the
		[6]

2.4. What are monodentate and bidentate ligands? [2]

QUESTION 3

- 3.1. List four factors that affect the magnitude of crystal field splitting [4]
- 3.2. Explain in detail how the d orbital splitting pattern of tetrahedral metal complexes are formed by evaluating the geometry of the relevant d orbitals in a tetrahedral ligand field in detail. [6]
- 3.3. Determine the number of unpaired electrons, magnetic spin only moment, and the crystal field stabilization energy as a multiple of Δ_0 for $[Fe(H_2O)_6]^{3+}$ complex ion. [6]

QUESTION 4

- 4.1. Describe the Jahn-Teller effect in detail, using a d⁹ species like Cu(II). [5]
- 4.2. The electronic spectrum below is that of a Cr³⁺ metal complex and the absorption peaks are 8 600 cm⁻¹, 13 600 cm⁻¹ and 23 200 cm⁻¹.

(a) Using the appropriate Tanabe-Sugano diagram, Identify the predicted spectral bands.

[3]

(b) calculate Δ_0 and the Racah parameter (*B*) for this complex ion. [7]

[16]

[15]

QUESTION 5

- 5.1. Explain the macrocyclic effect with the aid of an example? [5]
- 5.2. Place the following ligands in order of increasing stability with Cu²⁺ and explain your answer. [4]

QUESTION 6

6.1 Using the principles of HSAB theory determine, giving reason, whether $K_{eq} > 1$ or $K_{eq} < 1$ for:

[2]

[21]

$$\mathsf{NH}_2^-(aq) + \mathsf{H}_2\mathsf{O}(I) \leftrightarrow \mathsf{NH}_3(aq) + \mathsf{OH}^-(aq)$$

- 6.2 Which is the stronger acid in water between $[Ru(H_2O)_6]^{2+}$ and $[Ru(H_2O)_6]^{3+}$? briefly explain why?
 - [2]

[3]

[8]

- 6.2. What type of acid do we refer to [Ru(H₂O)₆]³⁺ as? Give a chemical equation that shows how [Ru(H₂O)₆]³⁺ acts as an acid.
- 6.2 Using Drago-Wayland E, C parameters, determine which of Et₃N, Et₂O and PMe₃ is the stronger base toward GaMe₃.
- 6.3 Which metal ion is a stronger Lewis acid between Li⁺ and Be²⁺, explain your choice. [2]
- 6.3 Although in the gas phase, the following amine bases exhibit the trend:

 $NMe_3 > NHMe_2 > NH_2Me > NH_3$ in base strength:

In aqueous solution, the trend is: $NHEt_2 > NH_2Et \sim NEt_3 > NH_3$. Briefly explain this observed difference in base strength in the aqueous solution. [2]

Is OH⁻ or S²⁻ more likely to form an insoluble salt with a +3 transition metal ion? Explain.

[2]

[9]

QUESTION 7

- 7.1 Design a selective two-step synthesis for *cis*-[Pt(NH₃)(PMe₃)Cl₂] starting with [PtCl₄]²⁻. Briefly explain your chosen synthetic procedure.
- 7.2 Suggest, giving reasons, which redox mechanism is operating in the following reactions.
- (a) $[Cr^{*}(H_{2}O)_{5}CI]^{3+} + [Cr(H_{2}O)_{6}]^{2+} \rightarrow [Cr(H_{2}O)_{6}]^{3+} + [Cr^{*}(H_{2}O)_{5}CI]^{2+} \qquad k = 0.02 \text{ M}^{-1}\text{s}^{-1}$ (b) $[Cr^{*}(H_{2}O)_{5}Br]^{3+} + [Cr(H_{2}O)_{6}]^{2+} \rightarrow [Cr(H_{2}O)_{6}]^{3+} + [Cr^{*}(H_{2}O)_{5}Br]^{2+} \qquad k = 9.0 \text{ M}^{-1}\text{s}^{-1}$

End of paper – Total marks = 100

[4]

[4]

Useful Equations and Supplementary Information

 $\begin{array}{l} pH = pK_{a} - (1/n) \log[M^{n+}] - 5.6/n \\ Pauling's OpE(OH)q, pK_{a} \approx 9 - 7p. \\ Bell's rule : OpE(OH)q, pK_{a} \approx 8 - 5p. \\ Spin-only formula: \mu_{s} = 2\{S(S+1)\}1/2 \ BM = \{n(n+2)\}1/2 \ BM \\ -\Delta H = E_{A}E_{B} + \ C_{A}C_{B} \\ \Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} \ \text{and} \ \Delta G^{\circ} = -RT \ InK \\ R = 8.314 \ JK^{-1}mol^{-1} \\ Planck's \ constant \ (h) = 6.62661 \ x \ 10^{-34} \ Js \\ Speed \ of \ light \ (c) = 2.9970 \ x \ 10^8 \ m/s \\ Avogadro's \ number = 6.02214 \ x \ 10^{23} \ molecules/mol \end{array}$

The Spectrochemical Series

CO, CN^- > phen > NO_2^- > en > NH_3 > NCS^- > H_2O > F^- > RCO_2^- > OH^- > $C\ell^-$ > Br^- > I^-

Strong field, low spin π -acceptor

 σ -donor only

Weak field, high spin π -donor

Order in nucleophilicity of typical Lewis bases

 CN^{-} , $CO < PR_3 < H^{-} < I^{-} < Br^{-} < CI^{-} < H_2O$

Trans- directing abilities

$$R_3Si^2 = R^2 = H^2 > PEt_3 > PMe_2Ph > PPh_3 > P(OPh)_3 = CN^2 > SEt_2 > COPh_3 > COPh_3 = CN^2 > SEt_2 > COPh_3 = CN^2 > S$$

 $Et_2NH > py > OSMe_2 = C_2H_4 = CO > CI^-$

Table and colour wheel of visible light and their complimentary colours

Wavelength Range (nm)	Wave Numbers (cm ⁻¹)	Color	Complementary Color
< 400	> 25,000	Ultraviolet	
400-450	22,000-25,000	Violet	Yellow
450-490	20,000-22,000	Blue	Orange
490-550	18,000-20,000	Green	Red
550-580	17,000-18,000	Yellow	Violet
580-650	15,000-17,000	Orange	Blue
650-700	14,000-15,000	Red	Green
> 700	< 14,000	Infrared	

© 2011 Pearson Education, Inc.

d² Tanabe-Sugano Diagram

d³ Tanabe-Sugano Diagram

d⁴ Tanabe-Sugano Diagram

d⁵ Tanabe-Sugano Diagram

d⁶ Tanabe-Sugano Diagram

d⁷ Tanabe-Sugano Diagram

d⁸ Tanabe-Sugano Diagram

Drago's C_A , E_A , C_B , and E_B values

Acid	C _A	EA
Trimethylboron, B(CH ₃) ₃	1.70	6.14
Boron trifluoride (gas), BF ₃	1.62	9.88
Trimethylaluminum, Al(CH ₃) ₃	1.43	16.9
lodine (standard), I ₂	1.00*	1.00*
Trimethylgallium, Ga(CH ₃) ₃	0.881	13.3
lodine monochloride, ICl	0.830	5.10
Sulfur dioxide, SO ₂	0.808	0.920
Phenol, C ₆ H ₅ OH	0.442	4.33
<i>tert</i> -butyl alcohol, C ₄ H ₉ OH	0.300	2.04
Pyrrole, C ₄ H ₄ NH	0.295	2.54
Chloroform, CHCl ₃	0.159	3.02
Base	C _B	E _B
1-Azabicyclo[2.2.2] octane,		
Quinuclidine, $HC(C_2H_4)_3N$	13.2	0.704
Trimethylamine, (CH ₃) ₃ N	11.54	0.808
Triethylamine, $(C_2H_5)_3N$	11.09	0.991
Dimethylamine, (CH ₃) ₂ NH	8.73	1.09
	7.40*	0.399
Diethyl sulfide, (C ₂ H ₅) ₂ S	7.40	
Diethyl sulfide, (C ₂ H ₅) ₂ S Pyridine, C ₅ H ₅ N	6.40	1.17
		1.17 1.30
Pyridine, C_5H_5N	6.40	
Pyridine, C_5H_5N Methylamine, CH_3NH_2	6.40 5.88	1.30
Pyridine, C_5H_5N Methylamine, CH_3NH_2 Ammonia, NH_3	6.40 5.88 3.46	1.30 1.36

NOTE: *Reference values. Source: Data from R. S. Drago, J. Chem. Educ., **1974**, 51, 300.

© 2011 Pearson Education, Inc.

			×,																	Г	 	0	~		ſ	٦
	18/VIII 2	He 4.003	0	e e	0	₽ Z	9.95	36	5	08.80	54	é	31.3	86	2u	2.0				H				Lr 260.1		
	₽	r	+	-	+		-	-		+	1	-		-	-	-	o-1 1 . 180			¢,	۶s	173.0	102	No 259.1		
			⊢	-	+	≥ū			-	+	-	-	-	-	-	-					2 G	168.9	101	Md 256.1		
		16/VI	<u> </u>		+	≌ ທ	-	-		-+	-	-	-	-	-	-			2	- H	-		-	Fm 257.1		
		15/V	~	z	14.01	ድ ወ	30.97	33	As	/4.92	51	Sb	121.8	83	ö	209.0				H						
		14/IV	90	ۍ ئ	10.2	si Ni	28.09	32	Ge	/2.61	50	Sn	118.7	82	Ъ	207.2				- 1-	-			1 252.1		
			-	_	+	P A	1.21	-		-	- 24		-			-			p block	- H	-			C† 252.1		
		₩			=					÷	-	-	-	-		-			d	LO LO	۲ e	158.9	97	BK 247.1		
									ZuZ	-	Y.		-	<u> </u>		-					ז ל ש	157.2	96	Cm 247.1		2
							11	29	2 C	63.5	47	Ag	107.	79	Ā	197.				H		_		Am 243.1		
		a					10	28	ïz	58.69	46	Р	106.4	78	£	195.1				-				-		
	Г		1				6	27	ပို	58.93	45	RР	102.9	77	-	192.2	109 Une			-	-	-	-	0 239.1		
	-	H 1.008						1		1	-		-	1.	-	1	Uno			H	-	-	-	237.0		
								1		+	-		-			-	Uns U			^o		144.2	92	U 238.0		
									1	+						+				C L	8 d	140.9	91	Pa 231.0		
								-		+		4	-			-	106 Unh							1 h 232.0		
							2	23		50.94	41	qN	92.91	73	Ца	180.9	Unp					138.9 1		-		f block
							4	22	Ξ	41.88	40	Ž	91.22	72	Ŧ	178.5	Unq U	-		ſ				₹ 22		fb
able							3		Sc	_	_	_	_		= E	+	L L c	ſ	d block		anthanidae		-	Actinides		
ic T		2	4 (Be		Ma	.30			+			-		Ba	4	88 Ra 226.0	ľ	0		tue	Lailt		Actir		
riod			-		+	-		_		-	_		-			_	0		ock							
The Periodic Table		-	۳. ا		0.0	-Na		19	<u>-</u>	<u></u>	37		85.4	55	ပို	132	Fr 223.0		s block							
Th€						(7)			p	oi	19				Ð		7									