QUESTION 1

1.1. Define an oxo acid and give an example of one such acid.
1.2. Distinguish between an Interchange and dissociative mechanism for substitution on metal ions.
1.3. Define the trans-effect.
1.4. How can an inner sphere redox reaction be distinguished from an outer sphere redox reaction?

QUESTION 2

2.1. For the following complexes, give the systematic (IUPAC) names, and indicate the electron configuration of the metal ion and give the geometry (shape) of the complex
(a) trans-[Co(en) $\left.21\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$
(b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\right]-\mathrm{NH}_{2}-\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{5}$
2.2. Write the structural formula for the following complexes:
(a) diamminesilver(I) dicyanoargentate(I)
(b) Tetrahydroxozincate(II)
2.3. Identify the types of isomerism and write the formulas that are possible for the complexes with the following molecular formulas:
(a) $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{3}(\mathrm{SCN})\right]$
(b) $\left[\mathrm{CoBr}\left(\mathrm{NH}_{3}\right)_{5}\right]\left(\mathrm{SO}_{4}\right)$
(c) $\left[\mathrm{FeCl}_{2}\right]-6 \mathrm{H}_{2} \mathrm{O}$
2.4. What are monodentate and bidentate ligands?

QUESTION 3

3.1. List four factors that affect the magnitude of crystal field splitting
3.2. Explain in detail how the d orbital splitting pattern of tetrahedral metal complexes are formed by evaluating the geometry of the relevant d orbitals in a tetrahedral ligand field in detail.
3.3. Determine the number of unpaired electrons, magnetic spin only moment, and the crystal field stabilization energy as a multiple of Δ_{\circ} for $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ complex ion.

QUESTION 4

4.1. Describe the Jahn-Teller effect in detail, using a d^{9} species like $\mathrm{Cu}(\mathrm{II})$.
4.2. The electronic spectrum below is that of a Cr^{3+} metal complex and the absorption peaks are $8600 \mathrm{~cm}^{-1}, 13600 \mathrm{~cm}^{-1}$ and $23200 \mathrm{~cm}^{-1}$.

(a) Using the appropriate Tanabe-Sugano diagram, Identify the predicted spectral bands.
(b) calculate $\Delta \mathrm{o}$ and the Racah parameter (B) for this complex ion.

QUESTION 5

5.1. Explain the macrocyclic effect with the aid of an example?
5.2. Place the following ligands in order of increasing stability with Cu^{2+} and explain your answer.

QUESTION 6

6.1 Using the principles of HSAB theory determine, giving reason, whether Keq >1 or $K_{\text {eq }}<1$ for:

$$
\begin{equation*}
\mathrm{NH}_{2}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrow \mathrm{NH}_{3}(a q)+\mathrm{OH}^{-}(a q) \tag{2}
\end{equation*}
$$

6.2 Which is the stronger acid in water between $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$? briefly explain why?
6.2. What type of acid do we refer to $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ as? Give a chemical equation that shows how $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ acts as an acid.
6.2 Using Drago-Wayland E, C parameters, determine which of $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{Et}_{2} \mathrm{O}$ and PMe_{3} is the stronger base toward GaMe_{3}.
6.3 Which metal ion is a stronger Lewis acid between Li^{+}and Be^{2+}, explain your choice.
6.3 Although in the gas phase, the following amine bases exhibit the trend:

$$
\mathrm{NMe}_{3}>\mathrm{NHMe}_{2}>\mathrm{NH}_{2} \mathrm{Me}>\mathrm{NH}_{3} \text { in base strength: }
$$

In aqueous solution, the trend is: $\mathrm{NHEt}_{2}>\mathrm{NH}_{2} \mathrm{Et}_{\mathrm{t}} \sim \mathrm{NEt}_{3}>\mathrm{NH}_{3}$. Briefly explain this observed difference in base strength in the aqueous solution.

Is OH^{-}or S^{2-} more likely to form an insoluble salt with a +3 transition metal ion? Explain.

QUESTION 7

7.1 Design a selective two-step synthesis for cis-[$\left.\mathrm{Pt}\left(\mathrm{NH}_{3}\right)\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}\right]$ starting with $\left[\mathrm{PtCl}_{4}\right]^{2}$. Briefly explain your chosen synthetic procedure.
7.2 Suggest, giving reasons, which redox mechanism is operating in the following reactions.
(a) $\left[\mathrm{Cr}^{*}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]^{3+}+\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\left[\mathrm{Cr}^{*}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]^{2+} \quad \mathrm{k}=0.02 \mathrm{Mr}^{-1} \mathrm{~s}^{-1}$
(b) $\left[\mathrm{Cr}^{*}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Br}\right]^{3+}+\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\left[\mathrm{Cr}^{*}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Br}\right]^{2+} \quad \mathrm{k}=9.0 \mathrm{M}^{-1} \mathrm{~s}^{-1}$

$$
\text { End of paper - Total marks = } 100
$$

Useful Equations and Supplementary Information

$\mathrm{pH}=\mathrm{pKa}_{\mathrm{a}}-(1 / \mathrm{n}) \log \left[\mathrm{M}^{\mathrm{n}+}\right]-5.6 / n$
Pauling's $\mathrm{OpE}(\mathrm{OH}) \mathrm{q}, \mathrm{pK}_{\mathrm{a}} \approx 9-7 \mathrm{p}$.
Bell's rule : $\mathrm{OpE}(\mathrm{OH}) \mathrm{q}, \mathrm{pK} \mathrm{a}_{\mathrm{a}} \approx 8-5 \mathrm{p}$.
Spin-only formula: $\mu_{\mathrm{s}}=2\{\mathrm{~S}(\mathrm{~S}+1)\} 1 / 2 \mathrm{BM}=\{\mathrm{n}(\mathrm{n}+2)\} 1 / 2 \mathrm{BM}$
$-\Delta H=E_{A} E_{B}+C_{A} C_{B}$
$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$ and $\Delta G^{\circ}=-R T \operatorname{InK}$
$\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Planck's constant $(\mathrm{h})=6.62661 \times 10^{-34} \mathrm{Js}$
Speed of light (c) $=2.9970 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Avogadro's number $=6.02214 \times 10^{23}$ molecules $/ \mathrm{mol}$

The Spectrochemical Series

$\mathrm{CO}, \mathrm{CN}^{-}>$phen $>\mathrm{NO}_{2}^{-}>$en $>\mathrm{NH}_{3}>\mathrm{NCS}^{-}>\mathrm{H}_{2} \mathrm{O}>\mathrm{F}^{-}>\mathrm{RCO}_{2}^{-}>\mathrm{OH}^{-}>\mathrm{Cl}^{-}>\mathrm{Br}^{-}>\mathrm{I}^{-}$
Strong field, low spin π-acceptor

Weak field, high spin π-donor

Order in nucleophilicity of typical Lewis bases

$\mathrm{CN}^{-}, \mathrm{CO}<\mathrm{PR}_{3}<\mathrm{H}^{-}<\mathrm{I}^{-}<\mathrm{Br}<\mathrm{Cl}^{-}<\mathrm{H}_{2} \mathrm{O}$

Trans- directing abilities

$$
\begin{gathered}
\mathrm{R}_{3} \mathrm{Si}^{-}=\mathrm{R}=\mathrm{H}^{-}>\mathrm{PEt}_{3}>\mathrm{PMe}_{2} \mathrm{Ph}>\mathrm{PPh}_{3}>\mathrm{P}(\mathrm{OPh})_{3}=\mathrm{CN}^{-}>\mathrm{SEt}_{2}> \\
\mathrm{Et}_{2} \mathrm{NH}>\mathrm{py}>\mathrm{OSMe}_{2}=\mathrm{C}_{2} \mathrm{H}_{4}=\mathrm{CO}>\mathrm{Cl}^{-}
\end{gathered}
$$

Table and colour wheel of visible light and their complimentary colours

Wavelength Range (nm)	Wave Numbers $\left(\mathrm{cm}^{-1}\right)$	Color	Complementary Color
<400	$>25,000$	Ultraviolet	
$400-450$	$22,000-25,000$	Violet	Yellow
$450-490$	$20,000-22,000$	Blue	Orange
$490-550$	$18,000-20,000$	Green	Red
$550-580$	$17,000-18,000$	Yellow	Violet
$580-650$	$15,000-17,000$	Orange	Blue
$650-700$	$14,000-15,000$	Red	Green
>700	$<14,000$	Infrared	

-

d^{3} Tanabe-Sugano Diagram

d^{4} Tanabe-Sugano Diagram

d^{5} Tanabe-Sugano Diagram

${ }^{7}$ Tanabe-Sugano Diagram

d^{8} Tanabe-Sugano Diagram

Drago's C_{A}, E_{A}, C_{B}, and E_{B} values

TABLE $6.8 \quad C_{A}, E_{A}, C_{B}$, and E_{B} Values ($\mathrm{kcal} / \mathrm{mol}$)

Acid	$C_{\text {A }}$	E_{A}
Trimethylboron, $\mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}$	1.70	6.14
Boron trifluoride (gas), BF_{3}	1.62	9.88
Trimethylaluminum, $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$	1.43	16.9
lodine (standard), I_{2}	1.00*	1.00*
Trimethylgallium, $\mathrm{Ga}\left(\mathrm{CH}_{3}\right)_{3}$	0.881	13.3
lodine monochloride, ICl	0.830	5.10
Sulfur dioxide, SO_{2}	0.808	0.920
Phenol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	0.442	4.33
tert-butyl alcohol, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$	0.300	2.04
Pyrrole, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NH}$	0.295	2.54
Chloroform, CHCl_{3}	0.159	3.02
Base	C_{B}	E_{B}
1-Azabicyclo[2.2.2] octane,		
Quinuclidine, $\mathrm{HC}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3} \mathrm{~N}$	13.2	0.704
Trimethylamine, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	11.54	0.808
Triethylamine, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$	11.09	0.991
Dimethylamine, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	8.73	1.09
Diethyl sulfide, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~S}$	7.40*	0.399
Pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	6.40	1.17
Methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$	5.88	1.30
Ammonia, NH_{3}	3.46	1.36
Diethyl ether, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	3.25	0.963
N, N-dimethylacetamide, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$	2.58	1.32*
Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$	0.681	0.525

NOTE: *Reference values.
Source: Data from R. S. Drago, J. Chem. Educ., 1974, 51, 300.
© 2011 Pearson Education, Inc.
The Periodic Table

