JOHANNESBURG

CEM01A3/CEM3A10 JUNE/JULY 2022 EXAMINATION B

EXAMINER:EXTERNAL MODERATOR:DR J. MOMA(WITS UNIVERSITY)
DATE: ULY 2022
TIME: 3 HOURS
MARKS: 100

INSTRUCTIONS:

1. This paper consists of 6 pages.
2. There are $\mathbf{1 0}$ QUESTIONS in this examination paper.
3. Calculators are allowed

QUESTION 1:

For a unimolecular surface reaction, consider a single reactant (A) chemisorbed on surface atom (S) of the solid and subsequently breaks up into products. Prove and calculate the following statements:
(i) Rate of the reaction is proportional to the partial pressure of A and the reaction is first order with respect to A
(ii) At low pressure, the reaction is the first order with respect to A and rate is proportional to the partial pressure of A
(iii) At high pressure, the reaction rate is independent of pressure and the reaction is zero order with respect to ' A '.

QUESTION 2:

Show the rate of adsorption follows the first order reaction kinetics with respect to the partial pressure of the gas molecule on the substrate.

QUESTION 3:

[a] The optical rotations of sucrose in 0.5 M HCl at $35^{\circ} \mathrm{C}$ at various time intervals are given below. Show that the reaction is of first order:

Time (minutes)	0	10	20	30	40	∞
Rotation (degrees)	+32.4	+28.8	+25.5	+22.4	+19.6	-11.1

[b] In an enzyme solution, sucrose undergoes fermentation. If 0.10 M solution of sucrose is reduced to 0.05 M in 10 hours and to 0.025 M in 20 hours, what is the order of the reaction and what is the rate constant?
[c] The half-life of the following homogenous gaseous reaction obeys first order kinetics, is 8 minutes. How long will it take for the concentration of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ to be reduced to 1% of the initial value?

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{SO}_{2}+\mathrm{Cl}_{2}
$$

[d] Show that for a first order reaction, the time required for 99.9% completion of the reaction is 10 times that required for 50% completion.

QUESTION 4:

[a] Write the three fundamental differences regarding the assumptions of Langmuir and Brunauer, Emmett and Teller (BET) adsorption isotherm.
[d] Graphically test the applicability of Langmuir isotherm the following data referring the adsorption of gas on charcoal.

P	100	200	500	900
x / m	1.56	1.97	2.29	2.41

From the graph, calculate the value of K and k_{1}
Langmuir imperial equation:

$$
\begin{gathered}
\frac{P}{\frac{x}{m}}=\frac{1}{k_{1} K}+\frac{P}{k_{1}} \\
K=\text { Adsorption coefficient } \\
k_{1}=\text { Proportionality constant }
\end{gathered}
$$

[c] The following data have been obtained for the adsorption of nitrogen on silica at 77 K . Po is the vapour pressure of liquid nitrogen at this temperature.

p / p_{0}	0.05	0.15	0.25	0.40	0.60	0.80
ml. adsorbed $/ \mathrm{gram}$ of silica	30	38	42.5	48	55	108

Calculate the surface area of silica in terms $\mathrm{m}^{2} . \mathrm{g}^{-1}$ by Brunauer, Emmett and Teller (BET) method at the point B (see the figure below, assume the area of N_{2} molecule as $16.2 \AA^{2}$).

QUESTION 5:

[a] Use the following data and show that the following reaction is second order:
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
Initial concentration of $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}=\mathrm{NaOH}=10 \mathrm{moles} / \mathrm{litre}$

Time (min.) $[\mathrm{t}]$	0	15	25	35	55
(a-x) $[\mathrm{a}=$ initial concentration and $\mathrm{x}=$ concentration after time $(\mathrm{t})]$	10	4.9	3.6	2.9	2.1

[b] Decomposition of a certain gas follows the second order reaction. Suppose the initial concentration of the gas is $5 \times 10^{-4} \mathrm{moles} /$ litre and 40% of it decomposed in 50 mim . What is the value of velocity constant of the decomposition reaction?
[c] For the following second order reaction:
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
Calculate the time required for the hydrolysis of $\mathbf{9 0 \%}$ ester
if the initial concentration of the reaction in the reaction mixture are:
(1) 0.05 M ester +0.1 M of base
(2) 0.1 M ester +0.1 M of base

QUESTION 6:

(a) Using the Arrhenius equation, calculate activation energy and pre-exponential factor for a reaction in which rate constants at 500 K and 700 K are $0.02 \mathrm{sec}^{-1}$ and $0.07 \mathrm{sec}^{-1}$ respectively.
(b) The rate constant of a second order reaction is $5.70 \times 10^{-5} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{sec}^{-1}$ at $25^{\circ} \mathrm{C}$ and 1.64 $\times 10^{-4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{sec}^{-1}$ at $40^{\circ} \mathrm{C}$. Calculate the activation energy and pre-exponential factor.
(c) Calculate the activation energy of a reaction whose rate constant is tripled by a $10^{\circ} \mathrm{C}$ rise in temperature in the vicinity of $27^{\circ} \mathrm{C}$

QUESTION 7:

(a) Using the Lambert-Beer law show the absorbance is directly proportional to the molar absorption coefficient and the path-length of the solution.
(b) The molar extinction coefficient of phenanthroline complex of iron (II) is $12.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ cm^{-1} and the minimum detectable absorbance is 0.01 . Calculate the minimum concentration of the complex that can be detected in a Lambert-Beer law cell of path length 1.0 cm .

QUESTION 8:

$10[2+3+3+2]$
(a) Calculate the energy associated with (a) one photon; (b) one Einstein of radiation of wavelength 8000 Å.
$h=6.62 \times 10^{-27} \mathrm{erg}$-sec; $c=3 \times 10^{10} \mathrm{~cm} \mathrm{sec}^{-1}$.
(b) When a substance A was exposed to light, 2×10^{-3} mole of it reacted in 20 minutes and 4 seconds. In the same time A absorbed 2.0×10^{6} photons of light per second. Calculate the quantum yield of the reaction. (Avogadro number $\mathrm{N}=6.02 \times 10^{23}$)
(c) When irradiated with light of $5000 \AA$ wavelength, 1×10^{-4} mole of a substance is decomposed. How many photons are absorbed during the reaction if its quantum yield is 10 ?
(d) A monochromatic radiation is incident on a solution of 0.05 molar concentration of an absorbing substance. The intensity of the radiation is reduced to one-fourth of the initial value after passing through 10 cm length of the solution. Calculate the molar extinction coefficient of the substance.

QUESTION 9:

Based on the Jablonski diagram, explain the various photo-physical process, such as, nonradiative transition and radiative transitions (fluorescence and phosphorescence).

QUESTION 10:

(a) In the following reaction an exposure of blue laser for the duration of 20 minutes causes a decrease of 0.075 millimole of bromine concentration. The solution absorbed 80% of the light passing through it. Calculate the quantum yield of the reaction.

(b) Give the reasons: The quantum yield value deviate from unity in most of the photochemical reactions.

