Determine whether the following statements are TRUE or FALSE. Motivate the statement if TRUE; provide a counterexample if FALSE.
(a) If $\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)$, then A is square.
(b) If the characteristic polynomial of a matrix A is $p(\lambda)=\lambda^{2}+1$, then A is invertible.
(c) If $\langle\bar{u}, \bar{v}\rangle=0$, then $\bar{u}=\overline{0}$ or $\bar{v}=\overline{0}$.
(d) Every orthogonal matrix is orthogonally diagonalizable.
(e) There is a subspace of $M_{2,3}$ (the space of 2×3 matrices) that is isomorphic to \mathbb{R}^{4}.

Let W be the subspace of \mathbb{R}^{3} spanned by the vectors $\bar{v}_{1}=(1,2,0)$ and $\bar{v}_{2}=(0,1,1)$. Find a basis for W^{\perp}.

Prove that if k is a positive integer, λ is an eigenvalue of a matrix A, and \bar{x} is a corresponding eigenvector, then λ^{k} is an eigenvalue of A^{k} and \bar{x} is a corresponding eigenvector.

Find a matrix P that diagonalizes

$$
A=\left[\begin{array}{ccc}
2 & 0 & -2 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

then compute the resulting diagonal matrix D.

Let \mathcal{P}_{3} have the evaluation inner product at the sample points

$$
x_{0}=-1, \quad x_{1}=0, \quad x_{2}=1 \quad \text { and } \quad x_{3}=2 .
$$

Find $\langle\bar{p}, \bar{q}\rangle$ and $\|\bar{p}\|$, for $\bar{p}=x+x^{3}$ and $\bar{q}=1+x^{2}$.

State and prove the Generalized Theorem of Pythagoras.

Question 7

Find values for a, b and c such that the matrix

$$
\left[\begin{array}{ccc}
a & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
b & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
c & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right]
$$

is orthogonal.

Find an orthogonal change of variables that eliminates the cross product terms in the quadratic form Q, and express Q in terms of the new variables.

$$
Q=3 x_{1}^{2}+4 x_{2}^{2}+5 x_{3}^{2}+4 x_{1} x_{2}-4 x_{2} x_{3}
$$

Fix an $m \times n$ matrix A. Determine whether the operator $T: M_{l, m} \rightarrow M_{l, n}$ such that

$$
T(B)=B A
$$

is linear. If it is, prove it, if not then provide a counterexample to one of the properties.

Let V and W be finite-dimensional real vector spaces with the same dimension, and let $T: V \rightarrow W$ be a linear transformation. Prove that $\operatorname{ker}(T)=\{\overline{0}\} \underline{\text { if and only if } T}$ is onto.

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the linear operator defined by the formula

$$
T\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(a_{1} x_{1}, a_{2} x_{2}, \ldots, a_{n} x_{n}\right)
$$

where a_{1}, \ldots, a_{n} are constants.
(a) Under what conditions on a_{1}, \ldots, a_{n} will T need in order to have an inverse?
(b) Assuming the conditions is (a) are met, find a formula for T^{-1}.

Let $T_{1}: \mathcal{P}_{1} \rightarrow \mathcal{P}_{1}$ be defined by

$$
T_{1}(p(x))=x p^{\prime}(x),
$$

and let $T_{2}: \mathcal{P}_{1} \rightarrow \mathcal{P}_{2}$ be defined by

$$
T_{2}(q(x))=x q(x)
$$

Fix the bases $B=\{1,1+x\}$ and $B^{\prime}=\left\{1,1+x, 1+x+x^{2}\right\}$ for \mathcal{P}_{1} and \mathcal{P}_{2}, respectively.
(a) Find $\left[T_{1}\right]_{B}$ and $\left[T_{2}\right]_{B^{\prime}, B}$.
(b) Use (a) to determine whether or not T_{1} is invertible. If it is, find $\left[T_{1}^{-1}\right]_{B}$.

