Supplementary Information

Insight into the relationship of redox ability and separation efficiency via the case of α -Bi₂O₃/Bi₅NO₃O₇

Jie-hao Li^{a,b,#}, Rui-hong Liu^{a,c,#}, Meng Ning^{a,c}, Yi-lei Li^{a,c}, Ying Liu^{a,c}, Xinying Liu^{d*}, Phathutshedzo Khangale^b, Diane Hildebrandt^e, Xiao-jing Wang^{a,c}, Fa-tang Li^{a,c*}

^a International Joint Laboratory of New Energy, Hebei University of Science and Technology, Shijiazhuang 050018, China

^b Department of Chemical Engineering, University of Johannesburg, Johannesburg
2028, South Africa

^c Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China.

^d Institute for the Development of Energy for African Sustainability (IDEAS), University of South Africa (UNISA), Florida 1710, South Africa.

^e African Energy Leadership Centre, WITS Business School & Molecular Science
Institute, School of Chemistry, University of Witwatersrand, Johannesburg, 2050,
South Africa

Experimental

Characterization of catalysts

Photoelectrochemical measurements were measured on an electrochemical workstation (Chenhua CHI-660E). The instrument contains a three-electrode quartz cell, with a platinum electrode as the counter electrode, an Ag/AgCl electrode as the reference electrode, and a conductive glass plate (ITO) coated with the samples as the working electrode. The electrolyte was a 0.2 mol/L Na₂SO₄ aqueous solution, and simulated visible-light and ultraviolet light were provided by a 300 W Xe lamp (UV filter or λ >400nm filter).

Table S1. The fitted lifetimes and the corresponding percentage of BNO, 0.744BBNO and α -Bi₂O₃

Sample	$\tau_1(ns)$	P ₁ (%)	$\tau_2(ns)$	P ₂ (%)	τ ₃ (ns)	P ₃ (%)	τ_{ave}
BNO	0.0767	52.37	1.9168	31.78	9.0695	15.85	6.81
0.744BBNO	0.1814	44.43	2.2732	36.09	11.5537	19.47	8.85
α -Bi ₂ O ₃	0.0391	39.93	1.8974	40.61	9.2643	19.46	7.02

Sample	Zeta potential (mV)
BNO	-40.3
0.744BBNO	-23.6
α -Bi ₂ O ₃	-19.3

Table S2. The Zeta potential of BNO, 0.744BBNO and $\alpha\text{-}Bi_2O_3$

Sample	Pollutant concentration	Degradation activity	Reason	Reference
2%Mo-BiOBr	10 mg/L sulfanilamide solution	2%Mo-BiOBr is 4.7 times higher than pure BiOBr	Doping improves separation efficiency	1
BCN-200/rGO	10 mg/L CIP	BCN-200/rGO is 9.0 times higher than pure Bi ₂ WO ₆ , 2.1 times of pure g- C ₃ N ₄	Improved separation efficiency	2
Bi ₂ MoO ₆ /Ti ₃ C ₂	TC	Bi ₂ MoO ₆ /Ti ₃ C ₂ is 8.8 times higher than pure Bi ₂ MoO ₆ , 1.3 times of pure Ti_3C_2	Heterojunction improves separation efficiency	3
β- Bi ₂ O ₃ /Bi ₂ O ₂ CO ₃	10 mg/L RhB	Heterojunction is high activity in Vis-light, but pure Bi ₂ O ₂ CO ₃ is high activity	The upward shift of the valence band of Bi ₂ O ₂ CO ₃ reduces the oxidation capacity, but improves the	
		under UV-light.	separation efficiency	4

Table S3. A comparison of the scientific value of the current work with the					
existing literature.					

Bi ₃ O ₄ Br/α-Bi ₂ O ₃	10 mg/L MO, 50 mg/L Phenol	Bi ₃ O ₄ Br/ α -Bi ₂ O ₃ is 11.6 times higher than pure Bi ₃ O ₄ Br, 5.2 times of pure α - Bi ₂ O ₃ under MO; Bi ₃ O ₄ Br/ α -Bi ₂ O ₃ is 1.4 times higher than pure Bi ₃ O ₄ Br, 3.3 times of pure α - Bi ₂ O ₃ under phenol	The downward movement of the Bi ₂ O ₃ VB position improves its oxidation capacity, but reduces the separation efficiency of the photogenerated carriers	5
FeV2O4-Bi2O3	25 mg/L MB	FeV_2O_4 - Bi_2O_3 is 7 times higher than pure FeV_2O_4 , 4.6 times of pure Bi_2O_3	FeV_2O_4 decorated Bi_2O_3 improves separation efficiency	6
0.744BBNO	10 mg/L RhB, 20 mg/L TC	Heterojunction activity is lower than pure substances	Heterojunction formation reduces the ability to generate reactive species	Present study

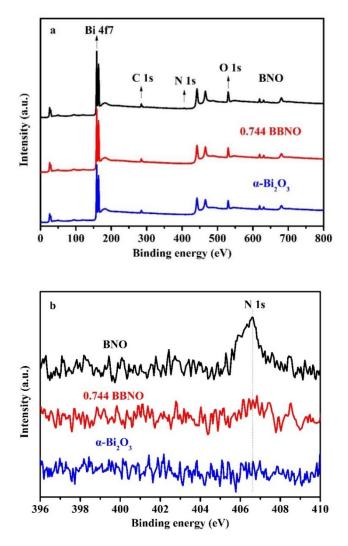


Fig. S1. a) XPS spectra and b) N 1s high resolution XPS spectra over BNO, 0.744BBNO and α -Bi₂O₃ samples.

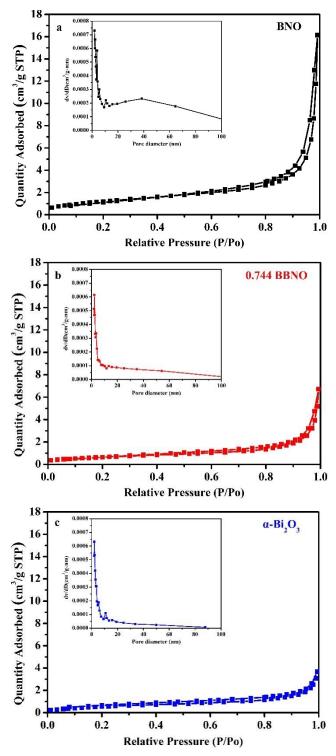


Fig. S2. a), b) and c): Nitrogen adsorption-desorption isotherms and pore size distributions of the BNO, 0.744BBNO and α -Bi₂O₃ samples.

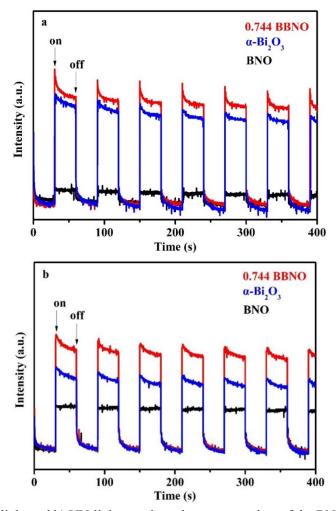


Fig. S3. a) Visible-light and b) UV-light transient photocurrent plots of the BNO, 0.744BBNO and α -Bi₂O₃ samples.

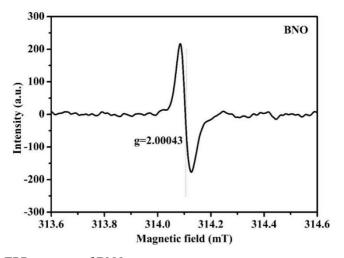
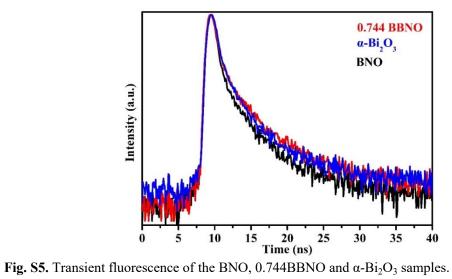
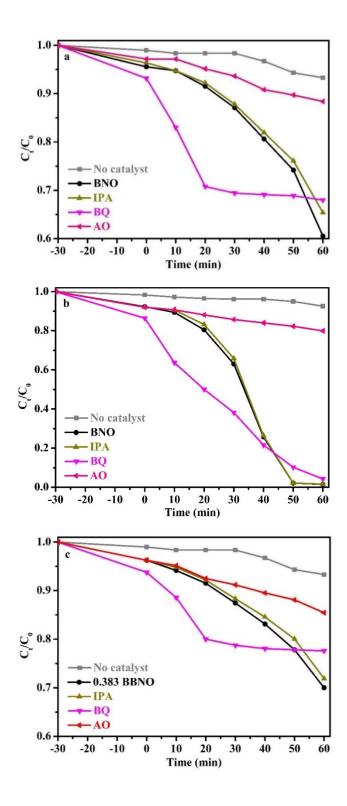




Fig. S4. Solid state EPR patterns of BNO.

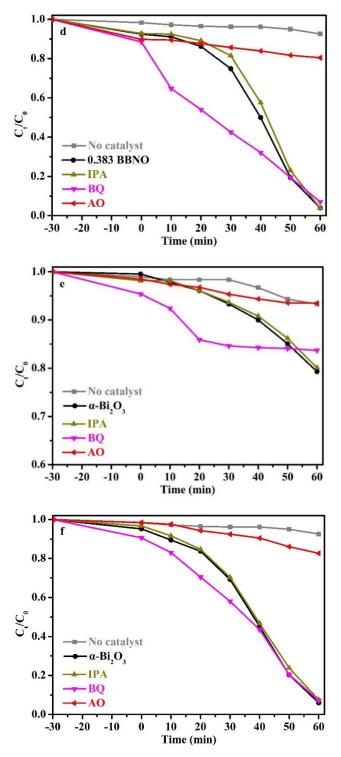
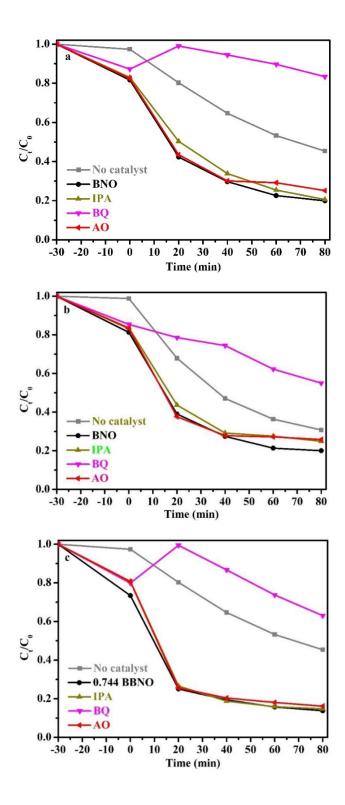



Fig. S6. a), c) and e): Scavenger experiments (RhB) of BNO, 0.383BBNO and α -Bi₂O₃ under Vislight. b), d) and f):Scavenger experiments (RhB) of BNO, 0.383BBNO and α -Bi₂O₃ under UV-light.

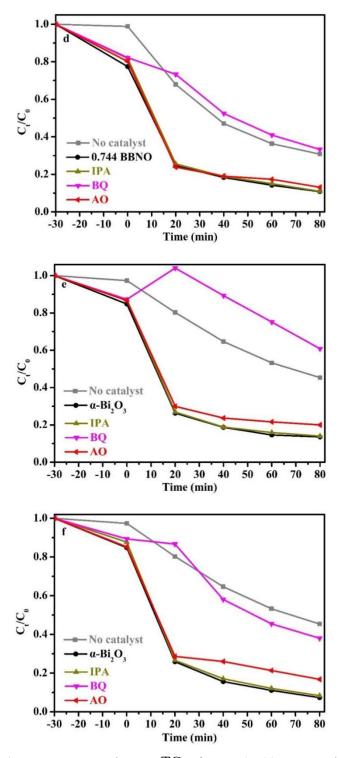


Fig. S7. a), c) and e): Scavenger experiments (TC) of BNO, 0.744BBNO and α -Bi₂O₃ under Vislight. b), d) and f): Scavenger experiments (TC) of BNO, 0.744BBNO and α -Bi₂O₃ under UVlight.

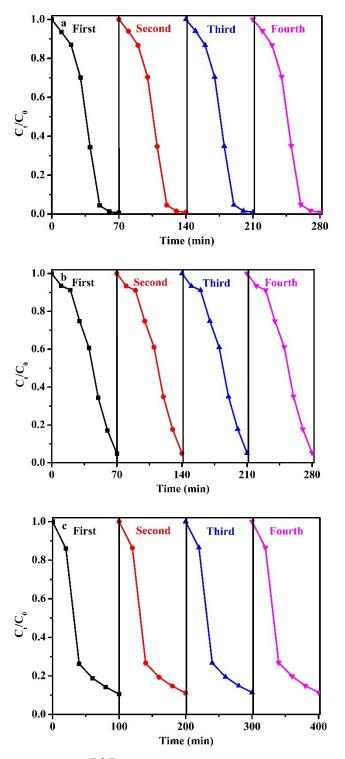


Fig. S8. a), b) and c): Cycles test (RhB) of BNO and 0.744BBNO under UV-light. c): Cycles test (TC) of α -Bi₂O₃ under UV-light.

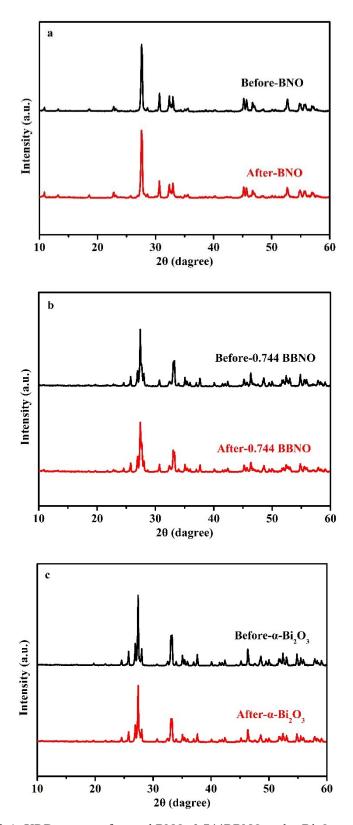


Fig. S9. a), b) and c): XRD spectra of reused BNO, 0.744BBNO and α -Bi₂O₃.

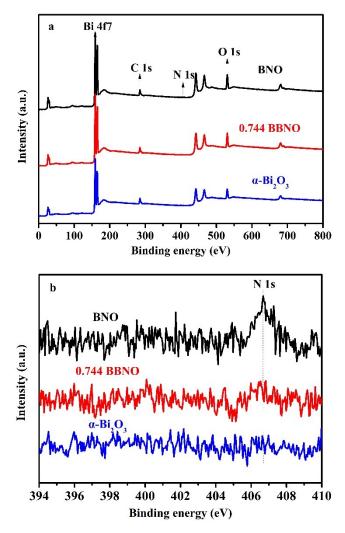


Fig. S10. a) XPS spectra and b) N 1s high resolution XPS spectra over reused BNO, 0.744BBNO and α -Bi₂O₃ samples.

References

1. Y. Y. Wu, H. D. Ji, Q. M. Liu, Z. Y. Sun, P.S. Li, P. R. Ding, M. Guo, X. H. Yi, W. L. Xu, C. C. Wang, S. Gao, Q. Wang, W. Liu and S. W. Chen, Visible Light Photocatalytic Degradation of Sulfanilamide Enhanced by Mo Doping of BiOBr Nanoflowers, *J. Hazard. Mater.*, 2022, **424**, 127563.

2. A. Verma, S. Kumar and Y. P. Fu, A Ternary-hybrid as Efficiently Photocatalytic Antibiotic Degradation and Electrochemical Pollutant Detection, *Chem. Eng. J.*, 2021, **408**, 127290.

3. D. X. Zhao and C. Cai, Preparation of Bi_2MoO_6/Ti_3C_2 MXene heterojunction photocatalysts for fast tetracycline degradation and Cr(VI) reduction,

Inorg. Chem. Front., 2020, 7, 2799-2808.

4. J. H. Li, J. Ren, Y. J. Hao, E. P. Zhou, Y. Wang, X. J. Wang, R. Su, Y. Liu, X. H. Qi and F. T. Li, Construction of β -Bi₂O₃/Bi₂O₂CO₃ Heterojunction Photocatalyst for Deep Understanding the Importance of Separation Efficiency and Valence Band Position, *J. Hazard. Mater.*, 2021, **401**, 123262.

5. J. G. Guo, Y. Liu, Y. J. Hao, Y. L. Li, X. J. Wang, R. H. Liu and F. T. Li, Comparison of Importance Between Separation Efficiency and Valence Band Position: The Case of

Heterostructured Bi₃O₄Br/α–Bi₂O₃ Photocatalysts, *Appl Catal B: Environ.*, 2018, **224**, 841–853. 6. B. Janania, S. Swetha, A. Syed, A. M. Elgorban, N. S.S. Zaghloul, Ajith M. Thomas, Lija L. Raju and S. S. Khan, Spinel FeV₂O₄ coupling on nanocube-like Bi₂O₃ for high performance white light photocatalysis and antibacterial applications, J. Alloy. Compd., 2021, **887**, 161432.