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Experimental Section

Materials

Reagents and chemicals were obtained from Shanghai Aladdin Bio-Chem 

Technology Co., LTD. without further purification. 

Typical procedures for oxidation of olefins to the corresponding aldehyde 

compounds

Add styrene, catalyst (5 mol%), styrene (1 mmol), H2SO4 (70 wt%, 0.2 mmol) and 

MeCN (5 mL) to 25 mL two-neck flask, respectively. Then, H2O2 (30 wt%, 6 mmol) 

was added dropwise from the separatory funnel, and the mixture was heated to 65 °C. 

After the reaction was completed, the organic solvent was extracted, concentrated under 

reduced pressure.

Preparation

Synthesis of DCP-CTF: The DCP-CTF was prepared according to previous 

literature.S1 2,6-Pyridinedicarbonitrile (DCP, 129 mg, 1 mmol) and zinc chloride 

(ZnCl2, 681.5 mg, 5 mmol) were put into Pyrex tube. The Pyrex tube was evacuated, 

sealed, and heated to 400 °C for 10 h and then heated 600 °C for 10 h. The heating rate 

is 5 °C min–1. The Pyrex tube was opened when it was cooled to room temperature. The 

black powder was treated with deionized water and dilute hydrochloric acid (1 mol L–

1). Then, the filtered black powder was washed in turn with deionized water (3×10 mL), 

THF (3×10 mL), and acetone (3×10 mL). Finally, the product was dried in vacuum at 

100 °C for 24 h.

Synthesis of DCP-CTF@Pd-MC: The palladium acetate powder (13 mg, 0.058 

mmol) was dissolved in dichloromethane (15 mL) and the solution was stirred for 30 
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min, then the DCP-CTF (90 mg) was added in the solution. After that the mixture was 

stirred for 24 h at room temperature. The obtained solid was centrifuged and extracted 

with dichloromethane soxhlet for 24 h. Then, DCP-CTF@Pd was dried under vacuum 

at 80 °C overnight. The Pd content was 7.45% as determined by ICP.

Instrumental characterization

Power X-ray diffraction (PXRD) data were collected with a PANalytical X’Pert 

Pro Diffractometer (Cu Kα, λ = 0.1542 nm), transmission electron microscope (TEM) 

images were obtained on a transmission electron microscope (JEOL, JEM-2100). The 

morphologies of the samples were recorded by a JEOL scanning electron microscope 

(SEM) equipped with an energy-dispersive spectrometer. X-ray photoelectron 

spectroscopy (XPS) data were obtained with Thermo Scientific K-Alpha spectrometer. 

Nitrogen sorption measurements were conducted with a Quantachrome Autosorb 

apparatus at 77 K. The specific surface areas were calculated by the Brunauer–Emmett–

Teller (BET) method. The samples were degassed at 150 °C for 12 h before 

measurements. The Pd contents of the CTF samples were determined by ICP analysis 

with an Agilent 720ES. All experiments were monitored using thin-layer 

chromatography (TLC, hexane:ethyl acetate=2:1). The yield was determined by 

Agilent 19091J-413 gas chromatography based on the internal standard method.
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Table S1. The optimized the reaction parameters. a

Entry H2SO4 

(equiv)
MeCN 
(mL)

H2O2 
(mmol)

Temp
(°C)

Time
(h)

Yield b
(%)

1 0.2 5 6 rt 24 Trace

2 0.2 5 6 45 12 40

3 0.2 5 6 55 8 72

4 0.2 5 6 65 8 95

5 0.2 5 6 75 8 87

6 0.4 5 6 65 8 89

7 - 5 6 65 8 Trace

8 0.2 5 3 65 8 32%

9 0.2 5 12 65 8 39%

10 c 0.2 5 6 65 8 <50%

11 0.2 5 O2 65 8 Trace

12 d Acid 5 6 65 8 <55%

a Reaction conditions: styrene (1 mmol), H2O2 (30 wt%), catalyst (5 mol%), CH3CN (5 mL), acid 

(70% wt).

b Determined by GC with an external standard.

c With EtOH, MeOH, DMF, DMSO, Aceton, THF, Toluene, 1,4-dioxane as the solvent (5 mL).

d With HCl, HNO3 as the acid (70 wt%, 0.2 equivalent).
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Figure S1. P–XRD patterns of DCP–CTF@Pd–MC (orange) and DCP–CTF@Pd–MC–5th (blue); 

simulated AA stacking of DCP–CTF (black).
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Figure S2. The XPS spectra of (a) DCP-CTF@Pd-MC-5th. The deconvoluted (b) C 1s and (c) N 1s 

of DCP-CTF@Pd-MC-5th.
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Figure S3. Average pore size distribution of DCP-CTF@Pd-MC (orange) and DCP-CTF@Pd-MC-

5th (blue).
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Figure S4. GC spectra of (a) Benzaldehyde, (b) 4-Chlorobenzaldehyde, (c) 3-Chlorobenzaldehyde, 

(d) 2-Chlorobenzaldehyde, (e) 4-Bromobenzaldehyde, (f) 4-Fluorobenzaldehyde, (g) 4-
Tolualdehyde, (h) 4-Anisaldehyde, (i) 4-tert-Butylbenzaldehyde, (j) 4-Nitrobenzaldehyde, (k) 
Hexanal
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Figure. S5. SEM image of DCP–CTF@Pd–5th (a). Mapping images of C (b), N (c), Pd (d).
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Figure. S6. N2 adsorption/desorption isotherms of DCP-CTF.
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Figure S7. The recovery of the DCP-CTF@Pd-MC catalyst at different cycle times.
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