

ENGINEERING CALCULUS 2B1

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
UNIVERSITY OF JOHANNESBURG

ASSESSMENT: FINAL EXAMINATION - 10/2021
TOTAL POINTS: 40
MODERATOR: PROF. R. PANT
MODULE CODE: MAT0CB2/MATECB2
ASSESSORS: DR. M. SIAS
DR. A. GOSWAMI

Instructions

- Before writing the test, make sure you have read the following honesty declaration and agree with it.
- Answer all questions. Show all the steps of your work.

Honesty Declaration

By writing this test, you confirm that you have not

- committed academic misconduct in any form;
- committed plagiarism;
- helped or attempted to help another student in preparing their submission for the assessment;
- misrepresented someone else's work as your own;
- obtained help or attempted to obtain help from another person;
- obtained help or attempted to obtain help from any source of information, except for explicitly provided lecture notes by the module assessor;
- made use of solutions or answers produced on websites.

Check whether the following statements are true or false. Write T if it is true or write F if it is false. Do not include explanations.
(i) If $f(x, y)=\sqrt{4-x^{2}-4 y^{2}}$, then $f_{x}(1,0)=\frac{1}{\sqrt{2}}$
[F; $\left.\frac{-1}{\sqrt{3}}\right]$
(ii) The gradient of the function $f(x, y)=x^{2} \ln y$ at $(3,1)$ is $9 j$.
[T]
(iii) If $R=[1,2] \times[0, \pi]$, then $\iint_{R} y \sin (x y) d A=1$.
[F; 0]
(iv) $\int_{0}^{1} \int_{0}^{s^{2}} \cos \left(s^{3}\right) d t d s=\frac{1}{2} \sin 3$.
[$\left.\mathrm{F} ; \frac{1}{3} \sin 1.\right]$
(v) $F(x, y)=\left(x y+y^{2}\right) \mathbf{i}+\left(x^{2}+2 x y\right) \mathbf{j}$ is a conservative vector field.
[F].

Question 2.

Find the extreme values of f subject to both constraints.

$$
f(x, y, z)=x+y+z, \quad x^{2}+z^{2}=2, \quad x+y=1 .
$$

Question 3.

Use polar coordinates to combine the following sum of integrals into a single double integral and then evaluate the integral.

$$
\begin{equation*}
\int_{0}^{1} \int_{\sqrt{1-x^{2}}}^{\sqrt{4-x^{2}}} \sin \left(x^{2}+y^{2}\right) d y d x+\int_{0}^{\sqrt{3}} \int_{1}^{\sqrt{4-y^{2}}} \sin \left(x^{2}+y^{2}\right) d x d y \tag{5}
\end{equation*}
$$

Question 4.

Consider the volume represented by the following triple integral.

$$
V=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} d z d y d x-\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}} d z d y d x
$$

(i) Explain, in words, the represented volume.
(ii) Rewrite the first term only in the order $d x d z d y$.
(iii) Rewrite V in spherical coordinates using only one triple integral.

Question 5.

Evaluate the integral by making an appropriate change of variables:

$$
\iint_{R}\left(\frac{x-y}{x+y+2}\right)^{2} d A
$$

where R is the square enclosed by the lines $x-y=-1, x+y=-1, x-y=1$ and $x+y=1$.

Question 6.

Show that

$$
\mathbf{F}(x, y)=\left\langle 4 x^{3} y^{2}-2 x y^{3}, 2 x^{4} y-3 x^{2} y^{2}+4 y^{3}\right\rangle
$$

is conservative and find the work done by \mathbf{F} in moving a particle along the path C given by

$$
\mathbf{r}(t)=\langle t+\sin \pi t, 2 t+\cos \pi t\rangle ; 0 \leqslant t \leqslant 1 .
$$

Question 7.

Let $\mathbf{r}=\langle x, y, z\rangle$ and let $r=|\mathbf{r}|$. Determine the value(s) of p such that the vector field $\mathbf{F}=\frac{\mathbf{r}}{r^{p}}$ has divergence zero.

