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1. Show that the differential equation, given below, is exact and use the appropriate method to solve it. Justify all
the steps taken and give full details. [5]

(y2 cos x − 3x2y − 2x) dx + (2y sin x − x3 + ln y) dy = 0

2. Solve the initial value problem [5](
x3 + 3xy2

) dy
dx

= y3 + 3x2y subject to y(2) = 1

3. Identify the given differential equation and use the appropriate method to find its general solution. [6]

x
dy
dx

+ y = x3y2

4. Newton’s Law of Heating/Cooling states that the rate of change of the temperature of an object is directly
proportional to the difference between the temperature of the object and the ambient temperature, that is, the
temperature of the surroundings.
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(a) Use a first order ordinary differential equation to model Newton’s Law as stated above. [1]
(b) A can of soft drink, with temperature 24◦C, is put in a freezer, where the temperature is −7◦C. Ten minutes

later, the temperature of the soft drink is measured and it is found to be −1◦C. Use the differential equation
in (a) to calculate the temperature of the soft drink 15 minutes after it was put in the freezer. [5]

5. Given the function f (t) as

(a) Express f (t) as a piecewise defined function. [3]
(b) Express the function f (t) in unit step/Heaviside form. Fully simplify. [1]
(c) Compute the Laplace transforms of f (t). [4]

6. Determine [5]

L−1
{

2s + 4
2s2 + 2s + 1

}
7. An arbitrary system is modeled by

y′′ + 2y′ − 3y = e−3(t−2) u(t − 2)

(a) Solve the differential equation above for y(t) if y(0) = y′(0) = 1. [8]
(b) Is the system in steady or transient state? Discuss. [1]

8. Given

f (x) =

2, −2 ≤ x ≤ 0
x, 0 ≤ x ≤ 2

and f (x) = f (x + 4)

(a) Find the trigonometric Fourier series of f (x) and present your answer as a sum of the first four
harmonics. [12]

(b) Find the complex Fourier series of f (x). [6]

9. Find the Fourier transform of

f (x) =

e2ix, if x < |1|
0, otherwise.

Express your answer in trigonometric form. [4]
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