Instructions:
Please answer the questions carefully, and clearly write your student number and name.
When uploading your exam, upload the document as a pdf.
When saving your document, please save the file with your student number then name (such as "201912345-JohnPaul.pdf").
Note that the deadline to submit the exam is 11:30 on Monday 7 June 2021.
Additionally be aware that there are 9 questions and 2 pages of this exam.

Question 1

Determine whether the following statements are true or false. If true, give a short justification. If false, give a counter example.
(a) A symmetric matrix is either positive definite, negative definite, or indefinite.
(b) If \bar{v} is a nonzero vector in V, then there is exactly one linear transformation $T: V \rightarrow W$ such that $T(-\bar{v})=-T(\bar{v})$.
(c) Every linear transformation from M_{33} to \mathcal{P}_{9} is an isomorphism.
(d) The composition of two linear transformations is also a linear transformation.

Question 2
Let A be a $m \times n$ matrix. Suppose that the nullspace of A is a plane in \mathbb{R}^{3} and the range of T_{A} is spanned by a nonzero vector \bar{v} in \mathbb{R}^{5}. Find m and n as well as the rank and nullity of A.

Question 3

Let A be a 3×3 matrix with eigenvalues 2 and 1 . If the eigenspace corresponding to 2 has basis $\{(-1,1,0),(0,0,1)\}$ and the eigenspace corresponding to 1 has basis $\{(0,-1,1)\}$, find A^{25}.
$\underline{\text { Question } 4}$
Let

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & \frac{1}{4}
\end{array}\right]
$$

Prove, or disprove, that $\langle\bar{x}, \bar{y}\rangle=\bar{x}^{T} A \bar{y}$ is an inner product. Note that $\bar{x}, \bar{y} \in \mathbb{R}^{2}$.

Find the best approximation to

$$
\bar{b}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

from the column space of

$$
A=\left[\begin{array}{cc}
-1 & 2 \tag{4}\\
0 & 1 \\
1 & 2
\end{array}\right]
$$

Question 6
Find an orthogonal change of variables that eliminates the cross product terms in the quadratic form

$$
Q=4 x_{1}^{2}+2 x_{2}^{2}+4 x_{3}^{2}+4 x_{1} x_{2}-4 x_{2} x_{3}
$$

and express Q in terms of the new variables.

Question 7

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear operator such that

$$
T\left(\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right], \text { and } T\left(\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

Solve for $T\left(\left[\begin{array}{l}5 \\ 5 \\ 6\end{array}\right]\right)$.

Question 8

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear operator given by the formula $T(x, y)=(x-2 y,-y)$. Is T one-to-one? If so, find T^{-1}.

Question 9

Let

$$
A=\left[\begin{array}{ccc}
2 & 0 & -1 \\
1 & 3 & 5 \\
0 & -2 & 6
\end{array}\right]
$$

be the matrix for $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ with respect to the basis $B=\left\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}\right\}$, where $\bar{v}_{1}=2-2 x^{2}$, $\bar{v}_{2}=1+2 x+2 x^{2}$, and $\bar{v}_{3}=3 x+x^{2}$.
(a) Find $\left[T\left(\bar{v}_{1}\right)\right]_{B},\left[T\left(\bar{v}_{2}\right)\right]_{B}$, and $\left[T\left(\bar{v}_{3}\right)\right]_{B}$.
(b) Find $T\left(\bar{v}_{1}\right), T\left(\bar{v}_{2}\right)$, and $T\left(\bar{v}_{3}\right)$.
(c) Find $T\left(1+x^{2}\right)$.

