Instructions:
Please answer the questions carefully, and clearly write your student number and name.
When uploading your exam, upload the document as a pdf.
When saving your document, please save the file with your student number then name (such as "201912345-JohnPaul.pdf").
Note that the deadline to submit the exam is 11:30 on Wednesday 23 June 2021.
Additionally be aware that there are 11 questions and 3 pages of this exam.

Question 1

Find the domain and range of the following functions:
(a) $f(x, y)=\sqrt{2 x^{2}+y}$.
(b) $f(x, y)=e^{\ln \left(x+y^{2}\right)}$.
(c) $f(x, y, z)=\frac{x}{z}$.

Question 2
Find the following limits if they exist, otherwise show that the limit does not exist.
(a)

$$
\lim _{(x, y) \rightarrow(1,2)} \frac{(x-1)(y-2)}{\sqrt{(x-1)^{2}+(y-2)^{2}}}
$$

(b)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x-4 y}{6 y+7 x}
$$

Question 3
Compute $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for the following equation:

$$
y^{3} x^{2}+2 \ln (x y)-\cos ^{2}(x)=x \sin (y)+2
$$

Question 4
Determine $f_{u u}$ if

$$
f=f(x, y) \quad x=u^{2}+3 v \quad y=u v .
$$

Assume that all second order derivatives are continuous.

Evaluate the integral

$$
\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} e^{x^{4}} \mathrm{~d} x \mathrm{~d} y
$$

Question 6
Let E be the region between the two planes $x+y+z=2$ and $z=0$ and inside the cylinder $y^{2}+x^{2}=1$. By making use of cylindrical coordinates, setup (but do not evaluate) the triple integral

$$
\iiint_{E} x \mathrm{~d} V .
$$

Question 7
Use spherical coordinates to setup (but not evaluate) the integral to calculate the volume of the region outside the sphere $x^{2}+y^{2}+(z-1)^{2}=1$ and inside the hemisphere $x^{2}+y^{2}+z^{2}=4$ with $z \geq 0$.

Question 8
Let R be the region bounded by $x y=1, x y=3, y=2$ and $y=6$. Evaluate

$$
\iint_{R} x y^{3} \mathrm{~d} A
$$

by making use of the transformation

$$
x=\frac{v}{6 u} \quad \text { and } \quad y=2 u .
$$

Question 9
Let \mathbf{F} be a conservative vector field. Compute

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}
$$

where C is the ellipse given by

$$
\frac{(x-5)^{2}}{4}+\frac{y^{2}}{9}=1
$$

with the counter clockwise rotation.

Use Green's Theorem to evaluate

$$
\int_{C} y x^{2} \mathrm{~d} x-x^{2} \mathrm{~d} y
$$

where C is the path starting at $(0,-5)$ going along the line $y=0$ to the point $(0,5)$ then traveling along the circle $x^{2}+y^{2}=25$ where $x \leq 0$ back to the point $(0,-5)$.
$\underline{\text { Question } 11}$
Determine if the following vector field is conservative:

$$
\mathbf{F}=\left\langle 4 y^{2}+\frac{3 x^{2} y}{x^{2}}, 8 x y+\frac{x^{3}}{z^{2}}, 11-\frac{2 x^{3} y}{z^{3}}\right\rangle
$$

