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Question 1 (20 marks)

(a) (2)Let f : I → R not be continuous, where I is a closed interval in R. With
appropriate reasoning, is the Bisection Method applicable to f?

(b) (2)Given f (x) = xex − cosx on [0, 1], with reference to the Bisection Method,
determine the minimum number of iterations required to have an accuracy of
10−9 in the root. If no root exists on the interval, then write “No root exists.”

(c) (8)Given f (x) = xex − cosx, use the Bisection Method to approximate a root of
f on [0, 1], accurate to 3 decimal digits. If no root exists on the interval, then
write “No root exists.”

(d) (4)Apply the fixed point iteration to −1
2

sinx+ x = 1 four times, with x0 = 1
2
. Use

an accuracy of 6 decimal digits throughout.

(e) (4)Determine if the fixed point iteration applied in the previous question will con-
verge.

Solution

a Since the function is not continuous, the Bisection Method is not applicable
as a jump discontinuity may occur at 0. For example, let I = [−1, 1] and let
f : I → R be defined by

f (x) :=


x whenever x < 0,
1 whenever x = 0,
x whenever x > 0.

It is trivial to show that f is not continuous at 0. We have f (−1) f (1) < 0, but
f has no root.

b Since f is continuous on I := [0, 1] and f (0) f (1) < 0, f has at least one root on
I and the Bisection Method is applicable. For root tolerance, given the closed
interval I and a tolerance 0 < 10−9 =: ε ∈ R, with x0 the exact root and xn the
approximate root after n iterations, we require

|xn − x0| ≤
|I|
2n

< ε

⇒ n > log2

(
|I|
ε

)
⇒ n > log2

(
1

10−9

)
≈ 29.897

⇒ n ≥ 30,

so the minimum is n = 30.

c The tolerance is specified to be 3 decimal digits, so ε = 10−2. The Bisection
Method is now applied. By letting n denote the number of iterations, the
following table is obtained after applying the Bisection Method to the given
function, on the given interval, with a tolerance of ε = 0.001, a maximum
number of iterations allowed of 50 and by rounding every presented value (unless
otherwise stated), to 6 decimal digits (where full values are used for calculations),
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the trailing zeroes are dropped, the following data can be presented, where we
choose the interval after an iteration to have left endpoint a and right endpoint
c if the product of the function values evaluated at a and c is strictly negative
and left endpoint c and right endpoint b if the product of the function values
evaluated at c and b is strictly negative.

n In c f (c) Is f (c) < ε?
1 [0, 1] 0.5 −0.053222 No.
2 [0.5, 1] 0.75 0.856061 No.
3 [0.5, 0.75] 0.625 0.356691 No.
4 [0.5, 0.625] 0.5625 0.141294 No.
5 [0.5, 0.5625] 0.53125 0.041512 No.
6 [0.5, 0.53125] 0.515625 −0.006475 No.
7 [0.515625, 0.53125] 0.523438 0.017362 No.
8 [0.515625, 0.523438] 0.519531 0.005404 No.
9 [0.515625, 0.519531] 0.517578 −0.000545 Yes.

The process terminated after 9 iterations by satisfying the tolerance condition.

An approximation of a root of f on I is c = 0.517578.

d Let f (x) := −1
2

sinx−1, then f facilitates fixed point iteration of −1
2

sinx+x =
1. Let x0 := 1

2
denote the initial value, then xn+1 = f (xn) for all n ∈ N0. The

values presented, as instructed, as rounded to 6 decimal digits and rounded
values, as instructed, are used for calculations (trailing zeroes are dropped).

n xn xn+1 = f (xn)
0 0.5 −1.239713
1 −1.239713 −0.527155
2 −0.527155 −0.748462
3 −0.748462 −0.659744

Hence, x4 = −0.659744.

e Let f (x) := −1
2

sinx − 1, then f ′ (x) = −1
2

cosx, so f ′
(
1
2

)
= −0.239713 ⇒∣∣f ′ (1

2

)∣∣ = 0.239713 < 1⇒ the process will converge to the root near x0.

Question 2 (20 marks)

(a) (9)Consider the task of approximating

∫ 2

1

e3x
2−xdx using the Composite Trape-

zoidal rule. How large should n and h be chosen in order to ensure that the
error is at most 0.0001?

Solution

f(x) = e3x
2−x, f ′(x) = e3x

2−x(6x−1), f ′′(x) = ex(3x−1) (36x2 − 12x+ 7) , f ′′′(x) =
ex(3x−1) (216x3 − 108x2 + 126x− 19)

f ′′′(x) = 0 when x = 1/6 /∈ [1, 2]

M = max{|f ′′(1)|, |f ′′(2)|} = max{229.061, 2.79736× 106} = 2.79736× 106

(b− a)Mh2

12
≤ 0.0001 =⇒ h2 ≤ 5.44799× 10−8 and h ≤ 0.000233409.

hence
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n ≥ 4284.32 = 4285

h = 1/4285 = 0.000233372

(b) The composite trapezoidal rule is used to approximate the integral

I =

∫ 2

1

x(x+ x3)dx.

i. (4)Complete the table below leaving all your solutions correct to four decimal
places.

xi 1 1.2 1.25 1.4 1.5 1.6 1.75 1.8 2
f(xi) 2 3.8016 4.00391 5.8016 7.3125 9.1136 12.4414 13.7376 20

ii. (3)Using the data in the table in part (i), apply the composite trapezoidal rule
to find the approximate value of I on [1, 2] with h = 0.25.
Solution

I =
0.25

2
(2 + 20 + 2(4.00391 + 7.3125 + 12.4414)) = 8.6895

(c) (4)Find the approximate value of the integral I =
∫ π/4
0

e3x sin(2x) dx using Gaus-
sian quadrature with n = 2, the nodes t1 = −0.577, t2 = 0.577 and coefficients
c1 = c2 = 1. All your solutions should be expressed correct to three decimal
points.

Solution:

Transforming the given integral using t =
2x− π/4− 0

π/4− 0
or x =

π

8
(t+ 1) we get∫ π/4

0
e3x sin(2x) dx =

π

8

∫ 1

−1 e
3π
8
(t+1) sin

(
2π

8
(t+ 1)

)
dt

Using the given nodes and coefficients for n = 2

f(t1) = 0.210812, f(t2) = 2.37956∫ π/4
0

e3x sin(2x) dx ≈= c1f(t1) + c2f(t2) = 2.590374

Question 3 (20 marks)
Let f(x) = −x cos (2x) + x2, x0 = 0, x1 = 0.3, x2 = 0.7.

(a) (4)Find Lagrange interpolating polynomial for f(x) using the three given nodes.

Solution:

f(0) = 0, f(0.3) = −0.15760; f(0.7) = 0.37102

L0(x) = (x−0.3)(x−0.7)
(0−0.3)(0−0.7) = 4.76190(x− 0.7)(x− 0.3)

L1(x) = (x−0)(x−0.7)
(0.3−0)(0.3−0.7) = −8.33333(x− 0.7)x

L2(x) = (x−0)(x−0.3)
(0.7−0)(0.7−0.3) = 3.57143(x− 0.3)x

P2(x) = f(0)L0(x) + f(0.3)L1(x) + f(0.7)L2(x)

= 1.31334(x− 0.7)x+ 1.32508(x− 0.3)x = 2.63842x2 − 1.31686x

(b) (5)Using the nodes x0 and x1, construct the Hermite interpolating polynomialH3(x)
for f(x) using the Lagrange coefficient polynomials.

Solution:
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f(0) = 0, f(0.3) = −0.15760

f ′(x) = 2x+ 2x sin(2x)− cos(2x), f ′(0) = −1, f ′(0.3) = 0.11345

L0(x) = (x−0.3)
(0−0.3) = −3.33333(x− 0.3)

L1(x) = (x−0)
(0.3−0) = 3.33333x

L′0(x) = −3.33333, L′1(x) = 3.33333

H0(x) = [1− 2(x− 0)L′0(0)]L2
0 = 11.1111(x− 0.3)2(6.66667x+ 1)

H1(x) = [1− 2(x− 0.3)L′1(0)]L2
1 = 11.1111(1− 6.66667(x− 0.3))x2

Ĥ0(x) = (x− 0)L2
0 = 11.1111(x− 0.3)2x

Ĥ1(x) = (x− 0.3)L2
1 = 11.1111(x− 0.3)x2

H3(x) = f(0)H0(x) + f(0.3)H1(x) + f ′(0)Ĥ0(x) + f ′(0.3)Ĥ1(x)

= −37.037x2(x− 0.3)− 1.75112(1− 6.66667(x− 0.3))x2 − 37.037x(x− 0.3)2

= −62.3999x3 + 28.08x2 − 3.33333x
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(c) (7)Determine the natural cubic spline that interpolates the data

f(0) = 2, f(3) = 3, f(8) = 1

and find the approximate value of f(1.2).

Solution:

S0(x) = a0 + b0x+ c0x
2 + d0x

3,

S1(x) = a1 + b1(x− 3) + c1(x− 3)2 + d1(x− 3)3,

h0 = 3, h1 = 5, a0 = 2, a1 = 3, a2 = 1, c0 = c2 = 0

A =

 1 0 0
h0 2(h0 + h1) h1
0 0 1

 =

 1 0 0
3 16 5
0 0 1

 , b =

 0
3(a2−a1)

h1
− 3(a1−a0)

h0

0

 =

 0
−11

5

0


c =

c0c1
c2


So from Ax = b, we have 16c1 = −11

5
implying c1 = −(11/80) = −0.1375; and

the rest of the parameters are given in the table below

a0 b0 c0 d0 a1 b1 c1 d1
2 0.470833 0 −0.0152778 3 0.0583333 −0.1375 0.00916667

S0(x) = −0.0152778x3 + 0.0583333x+ 2 on [0, 3],

S1(x) = 0.00916667(x− 3)3 − 0.1375(x− 3)2 + 0.0583333(x− 3) + 3, on [3, 8],

= −0.0166667x3 + 0.4x2 − 3.18333x+ 9.4, on [3, 8].

S(x) =

{
S0(x), on [0, 3]

S1(x), on [3, 8]
(2)

f(1.2) ≈ S(1.2) = S0(1.2) = −0.0152778(1.2)3 + 0.0583333(1.2) + 2 = 2.0436

(d) (4)The cubic Legendre polynomial is P2(x) =
1

2
(5x3− 3x). Prove that it is orthog-

onal (over [−1, 1]) to all polynomials of degree 2.

Solution:

Let the general polynomial of degree 2 be given by L2(x) = ax2 + bx+ c,

Then∫ 1

−1 P2(x)L2(x)dx =
∫ 1

−1
1

2
(5x3 − 3x)(ax2 + bx+ c)dx

=

∫ 1

−1

(
5ax5

2
− 3ax3

2
+

5bx4

2
− 3bx2

2
+

5cx3

2
− 3cx

2

)
dx
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=

[
1

2

(
1

4
x4(5c− 3a) +

5ax6

6
+ bx5 − bx3 − 3cx2

2

)]1
−1

=

[
1

2

(
1

4
(5c− 3a) +

5a

6
+ b− b− 3c

2

)]
−
[

1

2

(
1

4
(5c− 3a) +

5a

6
− b+ b− 3c

2

)]
= 0

Therefore P2(x) is orthogonal to all polynomials of order 2.

Question 4 (20 marks)

(a) (13)Develop a first-order method for approximating f ′′ (x) which uses the data
f (x− 4h), f (x+ 3h), f (x) and f (x+ 5h).

(b) (7)Using the most accurate centered difference formula, approximate f ′′ (1) and
then state the error in the approximation, given f (x) = cos (x) + x, for each
h ∈ {0.1, 0.01, 0.001}. Use an accuracy of 6 digits throughout.

Solution

a Let ξ1 ∈ (x− 4h, x), ξ2 ∈ (x, x+ 3h) and ξ3 ∈ (x, x+ 5h), then

f (x− 4h) = f (x)− 4hf ′ (x) +
16

2
h2f ′′ (x)− 64

6
h3f ′′′ (ξ1) , (3a)

f (x+ 3h) = f (x) + 3hf ′ (x) +
9

2
h2f ′′ (x) +

27

6
h3f ′′′ (ξ2) and (3b)

f (x+ 5h) = f (x) + 5hf ′ (x) +
25

2
h2f ′′ (x) +

125

6
h3f ′′′ (ξ3) . (3c)

By performing 2(3a)+(3b)+(3c) and simplifying, we obtain the following.

f ′′ (x) =
2f (x− 4h) + f (x+ 3h) + f (x+ 3h)− 4f (x)

33h2

+
h

198
[128f ′′′ (ξ1)− 27f ′′′ (ξ2)− 125f ′′′ (ξ3)] .

b The required formula is

f ′′ (x) =
−f (x+ 2h) + 16f (x+ h)− 30f (x) + 16f (x− h)− f (x− 2h)

12h2
+O

(
h4
)
.

Given f (x) = x+cosx, we have f ′′exact (x) = − cosx and so f ′′exact (1) = −0.540302.
By letting D (h, 1) denote the numerical approximation of the second derivative
at 1, using a step-size h, and letting E (h, 1) := |D (h, 1)− f ′′exact (1)|, then the
following table is populated.

h D (h, 1) E (h, 1)
0.1 -0.540302 0.0
0.01 -0.540302 0.0
0.001 -0.540302 0.0

Question 5 (20 marks)
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(a) (10)Given the initial value problem

x+ y + sin (x+ y) + cos (xy) +
dy

dx
= 0, y (0) = 0,

approximate y (1), with h = 0.1.

Solution:

n xn yn
0 0.0 0.0
1 0.1 −0.1
2 0.2 −0.199995
3 0.3 -0.299916
4 0.4 -0.399528
5 0.5 -0.498348
6 0.6 -0.59559
7 0.7 -0.615024
8 0.8 -0.690155
9 0.9 −0.780679
10 1.0 −0.865666

(b) (10)The Runge-Kutta method of order 2 (RK2) with h = 0.1 is used to solve

dy

dx
= −y + xy

with y(0) = 1 in order to find y(0.3) correct to four decimal places. Assuming
that the local error in RK2 is given by

εi+1 =
h3

6
y′′′(ξ), ξ ∈ [xi, xI+1],

estimate an upper bound for the global error at x = 0.3.

Solution:

∆3 = ε3 + α2ε2 + α2α1ε1 so that

|∆3| ≤ max
[0,0.3]

|εm|(1 + α + α2) = max
[0,0.3]

|εm|
(
α3 − 1

α− 1

)
where

α = max
[0,0.3]

|αm| = 1 + hmax
[0,0.3]

|Fy|, h = 0.1.

max
[0,0.3]

|εm| = max
[0,0.3]

∣∣∣∣h36 y′′′
∣∣∣∣ = max

[0,0.3]

∣∣∣∣h36 (fxx + 2ffxy + f 2fyy + fxfy + ff 2
y )

∣∣∣∣
fx = y, fy = −1 + x, fxx = fyy = 0, fxy = 1

fxx+2ffxy+f
2fyy+fxfy+ff

2
y = (x−1)2(xy−y)+(x−1)y+2(xy−y) = x3y−3x2y+6xy−4y

F (x, y) = 1
2
(−h(xy − y) + (h+ x)(h(xy − y) + y)− y) + 1

2
(xy − y)

= 1
2
h2xy − h2y

2
+ 1

2
hx2y − hxy + hy + xy − y

Fy = h2x
2
− h2

2
+ hx2

2
− hx+ h+ x− 1
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i 0 1 2 3
xi 0 0.1 0.2 0.3

f(xi) 1 0.9095 0.835467 0.775146

From RK2

α = 1 + hmax
[0,0.3]

|Fy| = 1 + 0.1(0.0905) = 1.0905

max
[0,0.3]

|εm| = max
[0,0.3]

∣∣∣∣h36 (fxx + 2ffxy + f 2fyy + fxfy + ff 2
y )

∣∣∣∣ =
h3

6
(1.89368) = 0.000315614

|∆3| ≤ max
[0,0.3]

|εm|
(
α3 − 1

α− 1

)
= (0.000315614)

(
1.09053 − 1

1.0905− 1

)
= 0.00103511

END OF QUESTION PAPER


