

# FACULTY OF SCIENCE

| DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS |                                                          |              |  |
|---------------------------------------------------|----------------------------------------------------------|--------------|--|
| MODULE                                            | MAT01A2/MAT2A10<br>SEQUENCES, SERIES AND VECTOR CALCULUS |              |  |
| CAMPUS<br>ASSESSMENT                              | APK<br>EXAMINATION WRITTEN                               |              |  |
| DATE 07/06/2021                                   |                                                          | TIME 12:30   |  |
| ASSESSOR(S)                                       |                                                          | DR A SWARTZ  |  |
| INTERNAL MODERATOR                                |                                                          | DR A GOSWAMI |  |
| DURATION 100 MINUTES                              |                                                          | MARKS 25     |  |
| SURNAME AND                                       | INITIALS                                                 |              |  |
| STUDENT NUMBER                                    |                                                          |              |  |
| CONTACT NUMBER                                    |                                                          |              |  |
| NUMBER OF PAG                                     | GES: $1 + 1$ PAGES                                       |              |  |

INSTRUCTIONS: 1. ANSWER ALL THE QUESTIONS ON THE PAPER IN PEN. 2. NO CALCULATORS ARE ALLOWED.

3. SHOW ALL CALCULATIONS AND MOTIVATE ALL ANSWERS.

## Question 1 [2 marks]

Prove or disprove the following statement:

If  $\sum a_n$  is convergent and  $\sum b_n$  is divergent then  $\sum (a_n + b_n)$  is divergent. Justify your reasoning completely.

#### Question 2

Test the following series for convergence or divergence. Justify your reasoning.

(a) 
$$\sum_{n=0}^{\infty} \frac{2^n}{n^2}$$
 (2)

(b) 
$$\sum_{n=1}^{\infty} (\sqrt[n]{4} - 1)^n$$
 (3)

(c) 
$$\sum_{n=1}^{\infty} \frac{\sin(n+1)}{1+n^2}$$
 (3)

### Question 3 [4 marks]

Find the Maclaurin series for f and its radius of convergence:

$$f(x) = (1 - 3x)^{-7}$$

Question 4 [2 marks]

Find  $\mathbf{r}(t)$  if  $\mathbf{r}'(t) = t^8 \mathbf{i} + 6t^5 \mathbf{j} - t^6 \mathbf{k}$  and  $\mathbf{r}(0) = \mathbf{j}$ .

### Question 5 [3 marks]

A particle moves with position function  $\mathbf{r}(t) = 4\sqrt{2}t\mathbf{i} - e^{-2t}\mathbf{j} + e^{2t}\mathbf{k}$ . Find the acceleration of the particle.

#### Question 6 [2 marks]

Find the integral 
$$\int (\cos 6t\mathbf{i} + \sin 6t\mathbf{j} + e^{-t/4}\mathbf{k}) dt$$
.

## Question 7 [4 marks]

Find the vectors  ${\bf T}$  and  ${\bf N}$  at the given point:

$$\mathbf{r}(t) = \langle \cos t, \ln \sin t, \sin t \rangle; \qquad \langle 0, 0, 1 \rangle$$