

FACULTY OF SCIENCE

DEPARTMEN	NT OF MATHEMA	TICS AND APPLIED MATHEMATICS
MODULE	MAT01A2/MAT2A10 SEQUENCES, SERIES AND VECTOR CALCULUS APK EXAMINATION	
CAMPUS ASSESSMENT		
DATE 07/06/2021		TIME 08:30
ASSESSOR(S)		DR A SWARTZ
INTERNAL MODERATOR		DR A GOSWAMI
DURATION 80 M	INUTES	MARKS 15
SURNAME AND	INITIALS	
STUDENT NUME	3ER	
CONTACT NUMI	3ER	
NUMBER OF PA	GES: $1 + 13$ PAGE	S
INSTRUCTIONS:	2. NO CALCULAT	THE QUESTIONS ON THE PAPER IN PEN. FORS ARE ALLOWED. ALCULATIONS AND MOTIVATE ALL ANSWER

4. IF YOU REQUIRE EXTRA SPACE, CONTINUE ON THE ADJACENT BLANK PAGE AND INDICATE THIS CLEARLY.

QUESTION1.1.1 A sequence $\{a_n\}$ is defined recursively as $a_n = 0.5(a_{n-1} + a_{n-2})$ for $n \ge 3$, and $a_1 = a_2 = 14$. Find the limit of the sequence. (1)

- a) 14
- b) 6
- c) 26
- d) 1
- e) None of the these is correct

QUESTION1.1.2 A sequence $\{a_n\}$ is defined recursively as $a_n = 0.5(a_{n-1} + a_{n-2})$ for $n \ge 3$, and $a_1 = a_2 = 16$. Find the limit of the sequence. (1)

- a) 16
- b) 6
- c) 26
- d) 1
- e) None of the these is correct

QUESTION1.1.3 A sequence $\{a_n\}$ is defined recursively as $a_n = 0.5(a_{n-1} + a_{n-2})$ for $n \ge 3$, and $a_1 = a_2 = 18$. Find the limit of the sequence. (1)

- a) 18
- b) 6
- c) 26
- d) 1
- e) None of the these is correct

(1)

QUESTION1.2.1 Determine whether the sequence defined by $a_n = \frac{n^2 - 5}{6n^2 + 1}$ converges or diverges. If it converges, find its limit. (1)

- a) $\frac{1}{6}$
- b) -5
- c) $\frac{-5}{6}$
- d) diverges.
- e) None of the these is correct

QUESTION1.2.2 Determine whether the sequence defined by $a_n = \frac{n^2 - 5}{7n^2 + 1}$ converges or diverges. If it converges, find its limit. (1)

- a) $\frac{1}{7}$
- b) -5
- c) $\frac{-5}{7}$
- d) diverges.
- e) None of the these is correct

QUESTION1.2.3 Determine whether the sequence defined by $a_n = \frac{n^2 - 5}{8n^2 + 1}$ converges or diverges. If it converges, find its limit. (1)

- a) $\frac{1}{8}$
- b) -5
- c) $\frac{-5}{8}$
- d) diverges.
- e) None of the these is correct

QUESTION1.3.1 Find the radius of convergence and the interval of convergence of the power series $\frac{\infty}{2} (-1)^n (x-8)^n$

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-8)^n}{\sqrt{n}}$$

- a) R = 1, I = (7, 9]
- b) R = 1, I = [7, 9)
- c) R = 8, I = [-8, 8)
- d) R = 8, I = (-8, 8)
- e) None of the these is correct

QUESTION 1.3.2 Find the radius of convergence and the interval of convergence of the power series \sim

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-6)^n}{\sqrt{n}}$$

- a) R = 1, I = (5, 7]
- b) R = 1, I = [5, 7)
- c) R = 6, I = (5, 7)
- d) R = 6, I = [5, 7]
- e) None of the these is correct

QUESTION 1.3.3 Find the radius of convergence and the interval of convergence of the power series \sim

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-4)^n}{\sqrt{n}}$$

- a) R = 1, I = (3, 5]
- b) R = 1, I = [3, 5)
- c) R = 4, I = (3, 5)
- d) R = 4, I = [3, 5]
- e) None of the these is correct

QUESTION 1.4.1 Determine whether the series converges or diverges. If it converges, determine its sum.

$$\sum_{n=0}^{\infty} 3^n 4^{-n+1}$$

- a) 16
- b) diverges
- c) 3
- d) 12
- e) No answer here is correct

QUESTION 1.4.2 Determine whether the series converges or diverges. If it converges, determine its sum. $~\sim$

$$\sum_{n=0}^{\infty} 5^n 6^{-n+1}$$

- a) 36
- b) 30
- c) 3
- d) 5
- e) diverges
- f) No answer here is correct

QUESTION1.4.3 Determine whether the series converges or diverges. If it converges, determine its sum.

$$\sum_{n=0}^{\infty} 6^n 7^{-n+1}$$

- a) 49
- b) 36
- c) 3
- d) 5
- e) diverges
- f) No answer here is correct

QUESTION 1.5.1 Find the Maclaurin series for $f(\mathbf{x})$ using the definition of the Maclaurin series.

$$f(x) = x\cos(4x)$$

- a) $\sum_{n=0}^{\infty} \frac{(-1)^n 4^{2n} x^{2n+1}}{(2n)!}$
- b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n} x^{2n+1}}{(2n)!}$

c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 4^{2n} x^{2n}}{(2n)!}$$

- d) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2n} x^{2n+1}}{(n)!}$
- e) None of these is correct

QUESTION 1.5.2 Find the Maclaurin series for f(x) using the definition of the Maclaurin series.

$$f(x) = x\cos(3x)$$

- a) $\sum_{n=0}^{\infty} \frac{(-1)^n 3^{2n} x^{2n+1}}{(2n)!}$
- b) $\sum_{n=0}^{\infty} \frac{(-1)^n 3^n x^{2n+1}}{(2n)!}$
- c) $\sum_{n=0}^{\infty} \frac{(-1)^n 3^{2n} x^{2n}}{(2n)!}$

d)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2n} x^{2n+1}}{(n)!}$$

e) None of these is correct

QUESTION1.5.3 Find the Maclaurin series for f(x) using the definition of the Maclaurin series.

$$f(x) = x\cos(5x)$$

- a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{2n} x^{2n+1}}{(2n)!}$
- b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^n x^{2n+1}}{(2n)!}$
- c) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{2n} x^{2n}}{(2n)!}$
- d) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{2n} x^{2n+1}}{(n)!}$
- e) None of these is correct

MAT2A10 EXAM - 7 JUNE 2021

Question 1.6

QUESTION1.6.1 A rubber ball is dropped from a height of 8 m onto a flat surface. Each time the ball hits the surface, it rebounds to 50% of its previous height. Find the total distance the ball travels.

- a) 24
- b) 16
- c) 36
- d) 32
- e) none of these answers is correct

QUESTION1.6.2 A rubber ball is dropped from a height of 16 m onto a flat surface. Each time the ball hits the surface, it rebounds to 50% of its previous height. Find the total distance the ball travels.

- a) 48
- b) 24
- c) 36
- d) 96
- e) none of these answers is correct

QUESTION1.6.3 A rubber ball is dropped from a height of 32 m onto a flat surface. Each time the ball hits the surface, it rebounds to 50% of its previous height. Find the total distance the ball travels.

- a) 96
- b) 48
- c) 64
- d) 132
- e) none of these answers is correct

QUESTION1.7.1 Find the limit

```
\lim_{t\to 0^+} \langle 8\cos t, 24\sin t, 5t\ln t \rangle
```

- a) r(t) = 8i
- b) r(t) = 8i + 24j + 5k
- c) r(t) = 8k
- d) r(t) = 8i 5k
- e) none of these answers is correct

QUESTION1.7.2 Find the limit

 $\lim_{t \to 0^+} \langle 8\cos t, 5t\ln t, 24\sin t \rangle$

- a) r(t) = 8i
- b) r(t) = 8i + 24j + 5k
- c) r(t) = 8k
- d) r(t) = 8i 5k
- e) none of these answers is correct

QUESTION1.7.3 Find the limit

 $\lim_{t\to 0^+} \langle 5t\ln t, 8\cos t, 24\sin t\rangle$

- a) r(t) = 8j
- b) $\mathbf{r}(t) = 8\mathbf{i} + 24\mathbf{j} + 5\mathbf{k}$
- c) r(t) = 8k
- d) r(t) = 8i 5k
- e) none of these answers is correct

QUESTION1.8.1 Find the unit tangent vector for the curve given by

$$\mathbf{r}(t) = \langle \frac{1}{5}t^5, \frac{1}{3}t^3, t \rangle$$

- a) $\frac{\langle t^4, t^2, 1 \rangle}{\sqrt{t^8 + t^4 + 1}}$
- b) $\frac{\langle t^4, t^2, 1 \rangle}{\sqrt{t^{10} + t^4}}$
- c) $\frac{\langle t^4, t^2, 1 \rangle}{\sqrt{4t^8 + 4t^4 + 1}}$
- d) $\frac{\langle t^4, t^2, 1 \rangle}{\sqrt{t^8 + t^4}}$
- e) none of these answers is correct

QUESTION1.8.2 Find the unit tangent vector for the curve given by

$$\mathbf{r}(t) = \langle \frac{1}{6}t^6, \frac{1}{4}t^4, t \rangle.$$

- a) $\frac{\langle t^5, t^3, 1 \rangle}{\sqrt{t^{10} + t^6 + 1}}$
- b) $\frac{\langle t^5,t^3,1\rangle}{\sqrt{t^{10}+t^6}}$
- c) $\frac{\langle t^5, t^3, 1 \rangle}{\sqrt{4t^{10}+4t^9+1}}$
- d) $\frac{\langle t^5, t^3, 1 \rangle}{\sqrt{t^{10} + t^4}}$
- e) none of these answers is correct

QUESTION1.8.3 Find the unit tangent vector for the curve given by

$$\mathbf{r}(t) = \langle \frac{1}{7}t^7, \frac{1}{5}t^5, t \rangle.$$

- a) $\frac{\langle t^6, t^4, 1 \rangle}{\sqrt{t^{12} + t^8 + 1}}$
- b) $\frac{\langle t^6,t^4,1\rangle}{\sqrt{t^{12}+t^8}}$
- c) $\frac{\langle t^6,t^4,1\rangle}{\sqrt{4t^{12}+4t^8+1}}$
- d) $\frac{\langle t^6, t^4, 1 \rangle}{\sqrt{t^{12} + t^{10}}}$
- e) none of these answers is correct

QUESTION1.9.1 Find the length of the curve $\mathbf{r}(t) = -3t \mathbf{i} + 2t \mathbf{j} - t \mathbf{k}, -2 \leq t \leq 1$.

- a) $3\sqrt{14}$
- b) $2\sqrt{14}$
- c) $6\sqrt{14}$
- d) $\sqrt{14}$
- e) none of these answers is correct

QUESTION1.9.2 Find the length of the curve $\mathbf{r}(t) = 3t \mathbf{i} - 2t \mathbf{j} + t \mathbf{k}, -2 \leq t \leq 1$.

- a) $3\sqrt{14}$
- b) $2\sqrt{14}$
- c) $6\sqrt{14}$
- d) $\sqrt{14}$
- e) none of these answers is correct

QUESTION1.9.3 Find the length of the curve $\mathbf{r}(t) = t \mathbf{i} - 2t \mathbf{j} + 3t \mathbf{k}, -2 \leq t \leq 1$.

- a) $3\sqrt{14}$
- b) $2\sqrt{14}$
- c) $6\sqrt{14}$
- d) $\sqrt{14}$
- e) none of these answers is correct

(2)

QUESTION1.10.1 What is the curvature of $\mathbf{r}(t) = \langle \sqrt{13}t, e^t, e^{-t} \rangle$ at the point (0, 1, 1)?

- a) $\frac{\sqrt{2}}{15}$
- b) $\sqrt{15}$
- c) $15\sqrt{2}$
- d) $\frac{15}{\sqrt{2}}$
- e) none of these answers is correct

QUESTION1.10.2 What is the curvature of $\mathbf{r}(t) = \langle e^t, \sqrt{13}t, e^{-t} \rangle$ at the point (1, 0, 1)?

- a) $\frac{\sqrt{2}}{15}$
- b) $\sqrt{15}$
- c) $15\sqrt{2}$
- d) $\frac{15}{\sqrt{2}}$
- e) none of these answers is correct

QUESTION1.10.3 What is the curvature of $\mathbf{r}(t) = \langle e^t, e^{-t}, \sqrt{13}t \rangle$ at the point (1, 1, 0)?

- a) $\frac{\sqrt{2}}{15}$
- b) $\sqrt{15}$
- c) $15\sqrt{2}$
- d) $\frac{15}{\sqrt{2}}$
- e) none of these answers is correct

(2)