FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS	
MODULE	MAT01A2/MAT2A10 SEQUENCES, SERIES AND VECTOR CALCULUS
CAMPUS APK ASSESSMENT EXAMINATION	

DATE 07/06/2021 TIME 08:30
ASSESSOR(S) DR A SWARTZ
INTERNAL MODERATOR DR A GOSWAMI
DURATION 80 MINUTES
MARKS 15

SURNAME AND INITIALS

STUDENT NUMBER \qquad

CONTACT NUMBER \qquad

NUMBER OF PAGES: $1+13$ PAGES
INSTRUCTIONS: 1. ANSWER ALL THE QUESTIONS ON THE PAPER IN PEN.
2. NO CALCULATORS ARE ALLOWED.
3. SHOW ALL CALCULATIONS AND MOTIVATE ALL ANSWERS.
4. IF YOU REQUIRE EXTRA SPACE, CONTINUE ON THE
ADJACENT BLANK PAGE AND INDICATE THIS CLEARLY.

Question 1 [15 marks]

Question 1.1

QUESTION1.1.1 A sequence $\left\{a_{n}\right\}$ is defined recursively as $a_{n}=0.5\left(a_{n-1}+a_{n-2}\right)$ for $n \geqslant 3$, and $a_{1}=a_{2}=14$. Find the limit of the sequence.
a) 14
b) 6
c) 26
d) 1
e) None of the these is correct

QUESTION1.1.2 A sequence $\left\{a_{n}\right\}$ is defined recursively as $a_{n}=0.5\left(a_{n-1}+a_{n-2}\right)$ for $n \geqslant 3$, and $a_{1}=a_{2}=16$. Find the limit of the sequence.
a) 16
b) 6
c) 26
d) 1
e) None of the these is correct

QUESTION1.1.3 A sequence $\left\{a_{n}\right\}$ is defined recursively as $a_{n}=0.5\left(a_{n-1}+a_{n-2}\right)$ for $n \geqslant 3$, and $a_{1}=a_{2}=18$. Find the limit of the sequence.
a) 18
b) 6
c) 26
d) 1
e) None of the these is correct

Question 1.2

QUESTION1.2.1 Determine whether the sequence defined by $a_{n}=\frac{n^{2}-5}{6 n^{2}+1}$ converges or diverges. If it converges, find its limit.
a) $\frac{1}{6}$
b) -5
c) $\frac{-5}{6}$
d) diverges
e) None of the these is correct

QUESTION1.2.2 Determine whether the sequence defined by $a_{n}=\frac{n^{2}-5}{7 n^{2}+1}$ converges or diverges. If it converges, find its limit.
a) $\frac{1}{7}$
b) -5
c) $\frac{-5}{7}$
d) diverges.
e) None of the these is correct

QUESTION1.2.3 Determine whether the sequence defined by $a_{n}=\frac{n^{2}-5}{8 n^{2}+1}$ converges or diverges. If it converges, find its limit.
a) $\frac{1}{8}$
b) -5
c) $\frac{-5}{8}$
d) diverges.
e) None of the these is correct

Question 1.3

QUESTION1.3.1 Find the radius of convergence and the interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-8)^{n}}{\sqrt{n}}
$$

a) $\mathrm{R}=1, \mathrm{I}=(7,9]$
b) $\mathrm{R}=1, \mathrm{I}=[7,9)$
c) $\mathrm{R}=8, \mathrm{I}=[-8,8)$
d) $\mathrm{R}=8, \mathrm{I}=(-8,8)$
e) None of the these is correct

QUESTION1.3.2 Find the radius of convergence and the interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-6)^{n}}{\sqrt{n}}
$$

a) $\mathrm{R}=1, \mathrm{I}=(5,7]$
b) $\mathrm{R}=1, \mathrm{I}=[5,7)$
c) $\mathrm{R}=6, \mathrm{I}=(5,7)$
d) $\mathrm{R}=6, \mathrm{I}=[5,7]$
e) None of the these is correct

QUESTION1.3.3 Find the radius of convergence and the interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-4)^{n}}{\sqrt{n}}
$$

a) $\mathrm{R}=1, \mathrm{I}=(3,5]$
b) $\mathrm{R}=1, \mathrm{I}=[3,5)$
c) $\mathrm{R}=4, \mathrm{I}=(3,5)$
d) $\mathrm{R}=4, \mathrm{I}=[3,5]$
e) None of the these is correct

Question 1.4

QUESTION1.4.1 Determine whether the series converges or diverges. If it converges, determine its sum.

$$
\sum_{n=0}^{\infty} 3^{n} 4^{-n+1}
$$

a) 16
b) diverges
c) 3
d) 12
e) No answer here is correct

QUESTION1.4.2 Determine whether the series converges or diverges. If it converges, determine its sum.

$$
\sum_{n=0}^{\infty} 5^{n} 6^{-n+1}
$$

a) 36
b) 30
c) 3
d) 5
e) diverges
f) No answer here is correct

QUESTION1.4.3 Determine whether the series converges or diverges. If it converges, determine its sum.

$$
\sum_{n=0}^{\infty} 6^{n} 7^{-n+1}
$$

a) 49
b) 36
c) 3
d) 5
e) diverges
f) No answer here is correct

Question 1.5

QUESTION1.5.1 Find the Maclaurin series for $f(x)$ using the definition of the Maclaurin series.

$$
f(x)=x \cos (4 x)
$$

a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n+1}}{(2 n)!}$
b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n} x^{2 n+1}}{(2 n)!}$
c) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n}}{(2 n)!}$
d) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n+1}}{(n)!}$
e) None of these is correct

QUESTION1.5.2 Find the Maclaurin series for $f(x)$ using the definition of the Maclaurin series.

$$
f(x)=x \cos (3 x)
$$

a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n} x^{2 n+1}}{(2 n)!}$
b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n} x^{2 n+1}}{(2 n)!}$
c) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n} x^{2 n}}{(2 n)!}$
d) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n} x^{2 n+1}}{(n)!}$
e) None of these is correct

QUESTION1.5.3 Find the Maclaurin series for $\mathrm{f}(\mathrm{x})$ using the definition of the Maclaurin series.

$$
f(x)=x \cos (5 x)
$$

a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{2 n} x^{2 n+1}}{(2 n)!}$
b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n} x^{2 n+1}}{(2 n)!}$
c) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{2 n} x^{2 n}}{(2 n)!}$
d) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{2 n} x^{2 n+1}}{(n)!}$
e) None of these is correct

Question 1.6

QUESTION1.6.1 A rubber ball is dropped from a height of 8 m onto a flat surface. Each time the ball hits the surface, it rebounds to 50% of its previous height. Find the total distance the ball travels.
a) 24
b) 16
c) 36
d) 32
e) none of these answers is correct

QUESTION1.6.2 A rubber ball is dropped from a height of 16 m onto a flat surface. Each time the ball hits the surface, it rebounds to 50% of its previous height. Find the total distance the ball travels.
a) 48
b) 24
c) 36
d) 96
e) none of these answers is correct

QUESTION1.6.3 A rubber ball is dropped from a height of 32 m onto a flat surface. Each time the ball hits the surface, it rebounds to 50% of its previous height. Find the total distance the ball travels.
a) 96
b) 48
c) 64
d) 132
e) none of these answers is correct

Question 1.7

QUESTION1.7.1 Find the limit

$$
\lim _{t \rightarrow 0^{+}}\langle 8 \cos t, 24 \sin t, 5 t \ln t\rangle
$$

a) $\mathbf{r}(\mathrm{t})=8 \mathbf{i}$
b) $\mathbf{r}(\mathrm{t})=8 \mathbf{i}+24 \mathbf{j}+5 \mathbf{k}$
c) $\mathbf{r}(\mathrm{t})=8 \mathbf{k}$
d) $\mathbf{r}(\mathrm{t})=8 \mathbf{i}-5 \mathbf{k}$
e) none of these answers is correct

QUESTION1.7.2 Find the limit

$$
\lim _{t \rightarrow 0^{+}}\langle 8 \cos t, 5 t \ln t, 24 \sin t\rangle
$$

a) $\mathbf{r}(\mathrm{t})=8 \mathbf{i}$
b) $\mathbf{r}(\mathrm{t})=8 \mathbf{i}+24 \mathbf{j}+5 \mathbf{k}$
c) $\mathbf{r}(\mathrm{t})=8 \mathbf{k}$
d) $\mathbf{r}(\mathrm{t})=8 \mathbf{i}-5 \mathbf{k}$
e) none of these answers is correct

QUESTION1.7.3 Find the limit

$$
\lim _{t \rightarrow 0^{+}}\langle 5 t \ln t, 8 \cos t, 24 \sin t\rangle
$$

a) $\mathbf{r}(\mathrm{t})=8 \mathbf{j}$
b) $\mathbf{r}(\mathrm{t})=8 \mathbf{i}+24 \mathbf{j}+5 \mathbf{k}$
c) $\mathbf{r}(\mathrm{t})=8 \mathbf{k}$
d) $\mathbf{r}(\mathrm{t})=8 \mathbf{i}-5 \mathbf{k}$
e) none of these answers is correct

Question 1.8

QUESTION1.8.1 Find the unit tangent vector for the curve given by

$$
\mathbf{r}(t)=\left\langle\frac{1}{5} t^{5}, \frac{1}{3} t^{3}, t\right\rangle .
$$

a) $\frac{\left\langle t^{4}, t^{2}, 1\right\rangle}{\sqrt{t^{8}+t^{4}+1}}$
b) $\frac{\left\langle t^{4}, t^{2}, 1\right\rangle}{\sqrt{t^{10}+t^{4}}}$
c) $\frac{\left\langle t^{4}, t^{2}, 1\right\rangle}{\sqrt{4 t^{8}+4 t^{4}+1}}$
d) $\frac{\left\langle t^{4}, t^{2}, 1\right\rangle}{\sqrt{t^{8}+t^{4}}}$
e) none of these answers is correct

QUESTION1.8.2 Find the unit tangent vector for the curve given by

$$
\mathbf{r}(t)=\left\langle\frac{1}{6} t^{6}, \frac{1}{4} t^{4}, t\right\rangle .
$$

a) $\frac{\left\langle t^{5}, t^{3}, 1\right\rangle}{\sqrt{t^{10}+t^{6}+1}}$
b) $\frac{\left\langle t^{5}, t^{3}, 1\right\rangle}{\sqrt{t^{10}+t^{6}}}$
c) $\frac{\left\langle t^{5}, t^{3}, 1\right\rangle}{\sqrt{4 t^{10}+4 t^{9}+1}}$
d) $\frac{\left\langle t^{5}, t^{3}, 1\right\rangle}{\sqrt{t^{10}+t^{4}}}$
e) none of these answers is correct

QUESTION1.8.3 Find the unit tangent vector for the curve given by

$$
\mathbf{r}(t)=\left\langle\frac{1}{7} t^{7}, \frac{1}{5} t^{5}, t\right\rangle
$$

a) $\frac{\left\langle t^{6}, t^{4}, 1\right\rangle}{\sqrt{t^{12}+t^{8}+1}}$
b) $\frac{\left\langle t^{6}, t^{4}, 1\right\rangle}{\sqrt{t^{12}+t^{8}}}$
c) $\frac{\left\langle t^{6}, t^{4}, 1\right\rangle}{\sqrt{4 t^{12}+4 t^{8}+1}}$
d) $\frac{\left\langle t^{6}, t^{4}, 1\right\rangle}{\sqrt{t^{12}+t^{10}}}$
e) none of these answers is correct

Question 1.9

QUESTION1.9.1 Find the length of the curve $\mathbf{r}(\mathrm{t})=-3 \mathrm{t} \mathbf{i}+2 \mathrm{t} \mathbf{j}-\mathrm{t} \mathbf{k},-2 \leqslant t \leqslant 1$.
a) $3 \sqrt{14}$
b) $2 \sqrt{14}$
c) $6 \sqrt{14}$
d) $\sqrt{14}$
e) none of these answers is correct

QUESTION1.9.2 Find the length of the curve $\mathbf{r}(\mathrm{t})=3 \mathrm{t} \mathbf{i}-2 \mathrm{t} \mathbf{j}+\mathrm{t} \mathbf{k},-2 \leqslant t \leqslant 1$.
a) $3 \sqrt{14}$
b) $2 \sqrt{14}$
c) $6 \sqrt{14}$
d) $\sqrt{14}$
e) none of these answers is correct

QUESTION1.9.3 Find the length of the curve $\mathbf{r}(\mathrm{t})=\mathrm{t} \mathbf{i}-2 \mathrm{t} \mathbf{j}+3 \mathrm{t} \mathbf{k},-2 \leqslant t \leqslant 1$.
a) $3 \sqrt{14}$
b) $2 \sqrt{14}$
c) $6 \sqrt{14}$
d) $\sqrt{14}$
e) none of these answers is correct

Question 1.10

QUESTION1.10.1 What is the curvature of $\mathbf{r}(\mathrm{t})=\left\langle\sqrt{13} t, e^{t}, e^{-t}\right\rangle$ at the point $(0,1,1)$?
a) $\frac{\sqrt{2}}{15}$
b) $\sqrt{15}$
c) $15 \sqrt{2}$
d) $\frac{15}{\sqrt{2}}$
e) none of these answers is correct

QUESTION1.10.2 What is the curvature of $\mathbf{r}(\mathrm{t})=\left\langle e^{t}, \sqrt{13} t, e^{-t}\right\rangle$ at the point $(1,0,1)$?
a) $\frac{\sqrt{2}}{15}$
b) $\sqrt{15}$
c) $15 \sqrt{2}$
d) $\frac{15}{\sqrt{2}}$
e) none of these answers is correct

QUESTION1.10.3 What is the curvature of $\mathbf{r}(\mathrm{t})=\left\langle e^{t}, e^{-t}, \sqrt{13} t\right\rangle$ at the point $(1,1,0)$?
a) $\frac{\sqrt{2}}{15}$
b) $\sqrt{15}$
c) $15 \sqrt{2}$
d) $\frac{15}{\sqrt{2}}$
e) none of these answers is correct

