

FACULTY OF SCIENCE

DEPARTMENT OF CHEMICAL SCIENCES

B Eng Tech in Engineering Metallurgy / Extraction Metallurgy

MODULE CETM1A1

CAMPUS DFC

MAJOR TEST 1

DATE: 10/05/2021 SESSION: 08H00 - 10:30

ASSESSOR Dr. MC FOTSING

INTERNAL MODERATOR MR P.P MONAMA

DURATION 180 MINUTES TOTAL MARKS 80

NUMBER OF PAGES: 4 PAGES, INCLUDING 1 ANNEXURE

INSTRUCTIONS: ANSWER ALL QUESTIONS IN THE ANSWER SCRIPT PROVIDED.

GIVE ALL NUMERICAL ANSWERS TO THE CORRECT NUMBER OF

SIGNIFICANT FIGURES AND WITH APPROPRIATE UNITS.

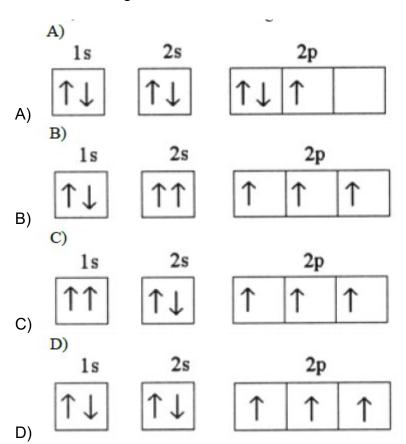
CONSULT THE DATA SHEET AND THE PERIODIC TABLE FOR ALL

SUPPLEMENTARY INFORMATION.

CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT).

REQUIREMENTS: ANSWER SCRIPT

QUESTION 1


Choo	ose the correct answer.
1.1	Solids have a shape and are not appreciably
	A) definite, compressible B) definite, incompressible C) indefinite, compressible D) indefinite, incompressible E) sharp, convertible
1.2	A combination of sand, salt, and water is an example of a
	A) homogeneous mixture B) heterogeneous mixture C) compound D) pure substance E) solid
1.3	Which one of the following has the element name and symbol correctly matched?
	A) P, potassium B) C, copper C) Mg, manganese D) Ag, silver E) Sn, silicon
1.4	Which one of the following is a pure substance?
	A) concrete B) wood C) salt water D) elemental copper E) milk
1.5	Which one of the following is not an intensive property?
	A) density B) temperature C) melting point D) mass E) boiling point

1.6	Which of the following are	e chemical processes?
	 rusting of a nail freezing of water decomposition of water compression of oxyger 	r into hydrogen and oxygen gases n gas
	A) 2, 3, 4 B) 1, 3, 4 C) 1, 3 D) 1, 2 E) 1, 4	
1.7	and	reside in the atomic nucleus.
	A) Protons, electronsB) Electrons, neutronsC) Protons, neutronsD) none of the aboveE) Neutrons, only neutron	ns
1.8	The atomic number indica	ates
		utrons and protons in a nucleus or electrons in a neutral atom n 1 g of an element
1.9	The subshel	l contains only one orbital.
	A) 5d B) 6f C) 4s D) 3d E) 1p	
1.10	0orbitals are	spherically symmetrical.
	A) s B) p C) d D) f E) g	

1.11 Each p-subshell can accommodate a maximum of _____ electrons.

- A) 6
- B) 2
- C) 10
- D) 3
- E) 5

1.12 Which one of the following is the correct electron configuration for a ground-state nitrogen atom?

- E) None of the above is correct.
- 1.13 The ground state electron configuration of Ga is ______.
 - A) $1s^2 2s^2 3s^2 3p^6 3d^{10} 4s^2 4p^1$
 - B) 1s² 2s² 2p⁶3s²3p⁶ 4s² 4d¹⁰ 4p¹
 - C) 1s² 2s² 2p⁶3s²3p⁶3d¹⁰ 4s² 4p¹
 - D) 1s² 2s² 2p⁶3s²3p⁶3d¹⁰ 4s² 4d¹
 - E) [Ar]4s²3d¹¹

1.14	In general, as you go across a period in the periodic table from left to right: (1) the atomic radius; (2) the electron affinity becomes negative; and (3) the first ionization energy
	A) decreases, decreasingly, increases B) increases, increasingly, decreases C) increases, increasingly, increases D) decreases, increasingly, increases E) decreases, increasingly, decreases
1.15	Most of the elements on the periodic table are
	A) gases B) nonmetals C) metalloids D) liquids E) metals
1.16	In which set of elements would all members be expected to have very similar chemical properties?
	A) O, S, Se B) N, O, F C) Na, Mg, K D) S, Se, Si E) Ne, Na, Mg
1.17	Which element would be expected to have chemical and physical properties closest to those of fluorine?
	A) S B) Fe C) Ne D) O E) CI
1.18	Atomic radius generally increases as we move
	A) down a group and from right to left across a period B) up a group and from left to right across a period C) down a group and from left to right across a period D) up a group and from right to left across a period E) down a group; the period position has no effect

1.19	Which ion below has the largest radius?	
	A) CI- B) K+ C) Br- D) F E) Na+	
1.20	Of the following elements, has the most negative electron affini	ty.
	A) Na B) Li C) Be D) N	
	E) F	40]
Sugg comp	gest a method of separating each of the following mixtures into two ponents: Sugar and sand Iron and sulfur	(5) (5)
2.2	non and suitu	(5)
	[1	10]
	STION 3	
	two isotopes of copper occur naturally. ⁶³ Cu (atomic mass = 62.9296 amu; ndance 69.17 %) and ⁶⁵ Cu (atomic mass = 64.9278 amu; abundance 30.83	
3.1	Calculate the atomic mass weight (average atomic mass) of copper.	(6)
		[6]

QUESTION 4

For each of the following elements, write its chemical symbol, determine the group to which it belongs, and indicate whether it is a metal, metalloid, or non metal

3.1	Potassium	(3)
3.2	lodine	(3)
3.3	Magnesium	(3)
	Argon	(3)
	Sulfur	(3)
		[15]

QUESTION 5

For each element, indicate the number of valence electrons, core electrons, and unpaired electrons in the ground state:

4.2	Carbon Phosphorus Neon	(3) (3) (3)
		[9]

TOTAL MARKS: 80

UNIVERSITY OF JOHANNESBURG

Department of Applied Chemistry

Atomic Weight

He

4.0026

1	
H	
3	4
Li 6.941	Be 9.0122
Na	12 Mg
22.990	24.305
19 T Z	20
K 39.098	Ca
37	38
Rb	Sr
85.47	87.62
55	56
Cs	Ba
132.91	137.33
87	88
Fr	Ra
(223)	226.03

Ac 227.03

21		22	23	24	25	26	27	28	29	30
21	Sc 44.956	Ti	V	Cr	Mn	Fe	Co 58.933		Cu	
39	Y 88.906	40 Zr 91.224	Nb	Mo	Tc	Ru	45 Rh	46 Pd	47 Ag	48 Cd
57	La 138.91	72 Hf 178.49	73 Ta	74 W 183.85	75 Re 186.2	76 Os 190.2	77 Ir	78 Pt	Au	80 Hg

Atomic Number

						He 4.0026
5	B	6 C 12.01	7 N 14.007	8 O 15.999	9 F 18.998	Ne 20.179
13	Al 26.982	Si 28.086	15 P 30.974	16 S 32.064	17 Cl 35.453	18 Ar 39.948
31	Ga	32 Ge	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.80
49	In	50 Sn 118.7	51 Sb 121.75	Te 127.60	53 I 126.90	54 Xe 131.29
81	Tl 204.38	Pb 207.2	83 Bi 208.98	Po (209)	85 At (210)	86 Rn (222)

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.12	140.91	144.24	146.92	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Ī	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.04	231.04	238.03	237.05	(244)	(234)	(247)	247	(251)	(252)	(257)	(258)	(259)	(260)