

FACULTY OF SCIENCE

DEPARTMENT OF CHEMICAL SCIENCES

B Eng Tech in Engineering Metallurgy / Extraction Metallurgy

MODULE CETM1A1

CAMPUS DFC

MAJOR TEST 2

DATE: 24/05/2021 SESSION: 08H00 - 10:00

ASSESSOR Dr. MC FOTSING

INTERNAL MODERATOR MR P.P MONAMA

DURATION 120 MINUTES TOTAL MARKS 70

NUMBER OF PAGES: 4 PAGES, INCLUDING 1 ANNEXURE

INSTRUCTIONS: ANSWER ALL QUESTIONS IN THE ANSWER SCRIPT PROVIDED.

GIVE ALL NUMERICAL ANSWERS TO THE CORRECT NUMBER OF

SIGNIFICANT FIGURES AND WITH APPROPRIATE UNITS.

CONSULT THE DATA SHEET AND THE PERIODIC TABLE FOR ALL

SUPPLEMENTARY INFORMATION.

CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT).

REQUIREMENTS: ANSWER SCRIPT

QUESTION 1

Choose the right answer.

1. When the following equation is balanced, the coefficient of H₃PO₄ is

 H_3PO_4 (aq) + NaOH (aq) \rightarrow Na₃PO₄ (aq) + H₂O (I) A) 1 B) 2 C) 3

2. There are _____ molecules of methane in 0.123 mol of methane (CH₄).

A) 5

D) 4 E) 0

B) $2.46 \times 10-2$

 $(2.04 \times 10-25)$

D) 7.40 × 1022

E) 0.615

3. How many grams of oxygen are in 65 g of $C_2H_2O_2$?

A) 18

B) 29

C) 9.0

D) 36

E) 130

4. What is the empirical formula of a compound that contains 49.4% K, 20.3% S, and 30.3% O by mass?

A) KSO₂

B) KSO₃

C) K₂SO₄

D) K₂SO₃

E) KSO₄

5. A compound is composed of only C, H, and O. The combustion of a 0.519-g sample of the compound yields 1.24 g of CO₂ and 0.255 g of H₂O. What is the empirical formula of the compound?

A) C₆H₆O

B) C₃H₃O

C) CH₃O

D) C₂H₆O₅

E) C₂H₆O₂

6.	The combustion of ammonia in the presence of excess oxygen yields NO_2 and H_2O :
	4 NH ₃ (g) + 7 O ₂ (g) \rightarrow 4 NO ₂ (g) + 6 H ₂ O (g) The combustion of 28.8 g of ammonia consumes g of oxygen.
	A) 94.9 B) 54.1 C) 108 D) 15.3 E) 28.8
7.	The molecular weight of the acetic acid (CH ₃ CO ₂ H) is amu.
	A) 60 B) 48 C) 44 D) 32 E) 22
8.	The mass % of F in the binary compound KrF ₂ is
	A) 18.48 B) 45.38 C) 68.80 D) 81.52 E) 31.20
9.	In the Lewis symbol for a fluorine atom, there are paired and unpaired electrons.
	A) 4, 2 B) 4,1 C) 2, 5 D) 6, 1 E) 0, 5
10.	Based on the octet rule, phosphorus most likely forms a ion.
	A) P ³⁺ B) P ³⁻ C) P ⁵⁺ D) P ⁵⁻ E) P ⁺
11.	The electron configuration of the S ²⁻ ion is
	A) [Ar]3s ² 3p ⁶ B) [Ar]3s ² 3p ² C) [Ne]3s ² 3p ⁶ D) [Ne]3s ² 3p ⁶ E) [Kr]3s ² 2p ⁶

12.	The ability of an atom in a molecule to attract electrons is best quantified by the
	A) paramagnetism B) diamagnetism C) electronegativity D) electron change-to-mass ratio E) first ionization potential
13.	Given the electronegativities below, which covalent single bond is most polar? Element: H C N O Electronegativity: 2.1 2.5 3.0 3.5
	A) C-H B) N-H C) O-H D) O-C E) O-N
14.	The ion NO ⁻ has valence electrons.
	A) 15 B) 14 C) 16 D) 10 E) 12
15.	The Lewis structure of PF3 shows that the central phosphorus atom has nonbonding and bonding electron pairs.
	A) 2, 2 B) 1, 3 C) 3, 1 D) 1, 2 E) 3, 3
16.	According to VSEPR theory, if there are four electron domains in the valence shell of an atom, they will be arranged in a(n) geometry.
	A) octahedral B) linear C) tetrahedral D) trigonal planar E) trigonal bipyramidal

17.	Which of the following compounds would you expect to be ionic?
	A) H ₂ O B) CO ₂ C) SrCl ₂ D) SO ₂ E) H ₂ S
18.	Which species below is the nitrate ion?
	A) NO ₂ ⁻ B) NH ₄ ⁺ C) NO ₃ ⁻ D) N ₃ ⁻ E) N ³ -
19.	Which one of the following compounds is copper(I) chloride?
	A) CuCl B) CuCl ₂ C) Cu ₂ Cl D) Cu ₂ Cl ₃ E) Cu ₃ Cl ₂
20.	The hybridization of the carbon atom in carbon dioxide is
	A) sp B) sp ² C) sp ³ D) sp ³ d E) sp ³ d ²
21.	In order to produce sp ³ hybrid orbitals, s atomic orbital(s) and p atomic orbital(s) must be mixed.
	A) one, two B) one, three C) one, one D) two, two E) two, three
22.	There are σ and π bonds in the $H_2C=C=CH_2$ molecule.
	A) 4, 2 B) 6, 4 C) 2, 2 D) 2, 6 E) 6, 2

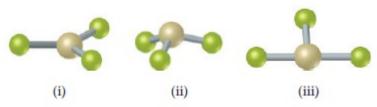
QUESTION 2

- 2.1 Calculate the percentage by mass of oxygen in the following compounds:
- 2.1.1 Morphine, $C_{17}H_{19}NO_3$ (2)
- 2.1.2 Cocaine, C₁₇H₂₁NO₄ (2)
- 2.2 The empirical formula of the following compounds is given. What is the molecular formula of each of the following compounds?
- 2.2.1 Empirical formula CH_2 , molar mass = 84 g/mol (2)
- 2.2.2 Empirical formula NH₂Cl, molar mass = 51.5 g/mol (2)

[8]

QUESTION 3

When benzene (C₆H₆) reacts with bromine (Br₂), bromobenzene (C₆H₅Br) is obtained:


$$C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$$

- 3.1 When 30.0 g of benzene reacts with 65.0 g of bromine, what is the theoretical yield of bromobenzene? (6)
- 3.2 If the actual yield of bromobenzene is 42.3 g, what is the percentage yield? (4)

[10]

QUESTION 4

The figure that follows shows ball-and-stick drawings of three possible shapes of an AF₃ molecule.

- 4.1 For each shape, give the electron-domain geometry on which the molecular geometry is based (6)
- 4.2 For each shape, how many nonbonding electron domains are there on atom A? (3)

QUESTION 5

Which of the following compounds are ionic and which are molecular?

- a) PF₅
- b) Nal
- c) SCl₂
- d) Ca(NO₃)₂
- e) FeCl₃
- f) LaP
- g) CoCO₃
- h) N₂O₄

(8)

[8]

TOTAL MARKS: 79

UNIVERSITY OF JOHANNESBURG

Department of Applied Chemistry

Atomic Weight

He

4.0026

1	
H	
3	4
Li 6.941	Be 9.0122
Na	12 Mg
22.990	24.305
19 T Z	20
K 39.098	Ca
37	38
Rb	Sr
85.47	87.62
55	56
Cs	Ba
132.91	137.33
87	88
Fr	Ra
(223)	226.03

Ac 227.03

21		22	23	24	25	26	27	28	29	30
21	Sc 44.956	Ti	\mathbf{V}	Cr	Mn	Fe	Co 58.933		Cu	
39	Y 88.906	40 Zr 91.224	Nb	Mo	Tc	Ru	45 Rh	46 Pd	47 Ag	48 Cd
57	La 138.91	72 Hf 178.49	73 Ta	74 W 183.85	75 Re 186.2	76 Os 190.2	77 Ir	78 Pt	Au	80 Hg

Atomic Number

						He 4.0026
5	B	6 C 12.01	7 N 14.007	8 O 15.999	9 F 18.998	Ne 20.179
13	Al 26.982	Si 28.086	15 P 30.974	16 S 32.064	17 Cl 35.453	18 Ar 39.948
31	Ga	32 Ge	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.80
49	In	50 Sn 118.7	51 Sb 121.75	Te 127.60	53 I 126.90	54 Xe 131.29
81	Tl 204.38	Pb 207.2	83 Bi 208.98	Po (209)	85 At (210)	86 Rn (222)

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.12	140.91	144.24	146.92	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Ī	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.04	231.04	238.03	237.05	(244)	(234)	(247)	247	(251)	(252)	(257)	(258)	(259)	(260)