

CHEMISTRY HONOURS EXAMINATION: JUNE 2017

MODULE: CEM 8X04- INSTRUMENTAL ANALYSIS

Examiners: Prof. R. Meijboom and Dr E.M. Mmutlane

Moderator: Dr R. Mampa (University of Limpopo)

INSTRUCTIONS

- (i) This examination is out of a Total of 100 Marks and you have 3 Hours (180 Minutes) to complete it. No extra time will be allowed for any reason.
- (ii) The Exam comprises 2 Sections. PLEASE ANSWER EACH SECTION IN A SEPARATE BOOK.
- (iii) The use of cell phones and other electronic devices is forbidden and they must be switched off.

SECTION 1: NMR, IR, MS and UV-VIS SPECTROSCOPY

QUESTION 1

The following spectroscopic data is for a compound of molecular formula C₁₀H₁₁BrO.

¹H NMR (300 MHz; CDCl₃; Me₄Si) δ 7.78, doublet, J = 7.5 Hz, integration = 2H, 7.51, doublet, J = 7.5 Hz, integration = 2H, 2.55, triplet, J = 7.0 Hz, integration = 2H, 1.52, sextet, J = 7.0 Hz, integration = 2H, 0.96, triplet, J = 7.0 Hz, integration = 3H.

¹³C NMR (75 MHz; CDCl₃) & DEPT δ 197.6 (C), 136.4 (C), 131.7 (CH), 130.8 (CH), 127.5 (C), 41.3 (CH₂), 17.2 (CH₂), 13.5 (CH₃).

v max(film)/cm⁻¹: 3078m, 2962m, 1690s, 1594m, 1465m, and 1375m.

m/z: 226 (100.0%), 228 (97.3%), 183 (51%), 185 (49%), 147 (79%), 197 (51%) 199 (41%), 186 (34%) and 184 (37%).

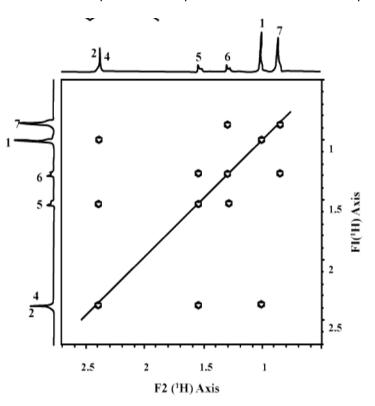
- **1.1:** Decipher the structure of the above compound, succinctly outlining your reasoning. Make sure that you assign each IR peak to a specific type of bond vibration in the structure **(15)**
- **1.2:** Assign each proton signal and each carbon signal to a specific atom in the structure. (12)
- **1.3:** Do the relevant calculations to confirm your ¹H and ¹³C assignments. (6)
- 1.4: In the mass spectral data:

(52)

- (a) Most of the peaks appear as doublets of nearly the same intensity. Why is that the case? (2)
- (b) Give the fragments that give rise to the peaks at 226 and 228.
- (c) Show how the fragments at 183 and 185 come about.
- (d) Show how the fragment at 147 comes about.
- (e) The two sets of fragments at 197 & 199, and those at 184 & 186 result from McLafferty rearrangement to the carbonyl and to the aromatic ring respectively. Show how these occur.
 - (8)

(14)

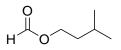
(6)


(2)

(4)

(3)

QUESTION 2


The following is a simulated COSY spectrum of heptanone. Please answer the questions that follow.

- 2.1 Which isomer of heptanone is this a spectrum of? Please give a reason for your answer. (2)
- 2.2 How would you use DEPT Spectra to confirm your answer above? (4)
- 2.3 Predict the splitting pattern/multiplicity of the peaks numbered 1, 2,4, 5,6 and 7, as well as the expected coupling constants. (4)
- **2.4** Explain in details, how the depicted spectrum confirms your answer to 2.1 above. (4)

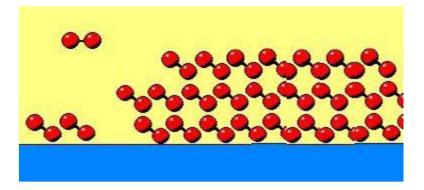
QUESTION 3

Draw a simulated heteronuclear single quantum coherence (HSQC) spectrum of isobutyl formate. The two axes must be drawn to scale, with signal multiplicities correctly reflected on the proton spectral axis.

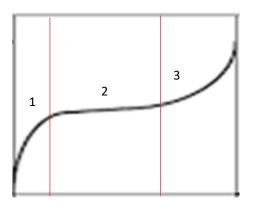
SECTION 2: SURFACE CHARACTERIZATION TECHNIQUES

(15)

PLEASE ADD QUESTIONS HERE FOR 28 MARKS


QUESTION 4

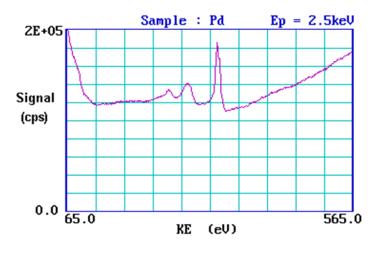
4.1. Explain the formation of hysteresis loop in the type IV isotherm. Use diagram(s) where necessary. (2)


4.2. How will the adsorption isotherm look like if a material is only microporous and give reasons?(2)

4.3. Derive the BET equation from first principle. (5)

4.4. From the diagram shown below, which of the Langmuir assumptions do not hold true? (2)

4.5. Explain regions I,II and III in the type II isotherm shown below in terms of adsorption. Determine and briefly explain where you are most likely to get reliable surface area information in this isotherm. (4)

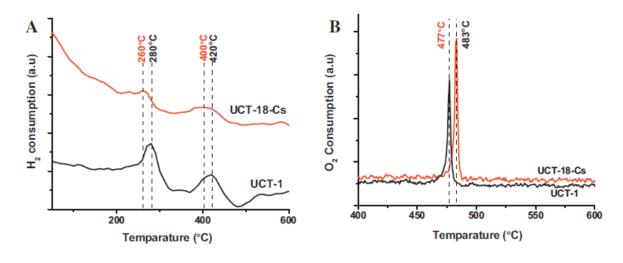


4

QUESTION 5

5.1. Explain the working principle of the two electron spectroscopes (Use diagrams where necessary). (3)

5.2. Identify the spectrum below as either XPS or AES and explain the increase in signal intensity at high kinetic energies.(2)



QUESTION 6

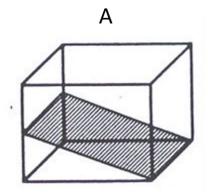
6.1. UCT-1 and UCT-18 are mesoporous manganese oxide and Cs-doped mesoporous manganese oxide, respectively.

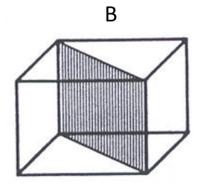
6.1.1. Which graph best represents O₂-TPO?

6.1.2. If the mesoporous manganese oxide has a ration of Mn:O of 2:3, assign the reduction profile of UCT-1 and comment of the effect of doping with Cs (4)

QUESTION 7

(5)


(5)


(1)

7.1. Define Bragg's law

(1)

7.2. Give fractional intercepts (where appropriate) and Miller indices of the simple cubic systems given below. (2)

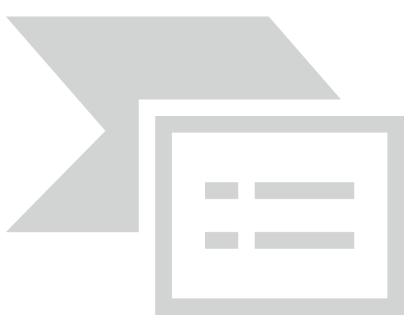


Table of Characteristic IR Absorptions

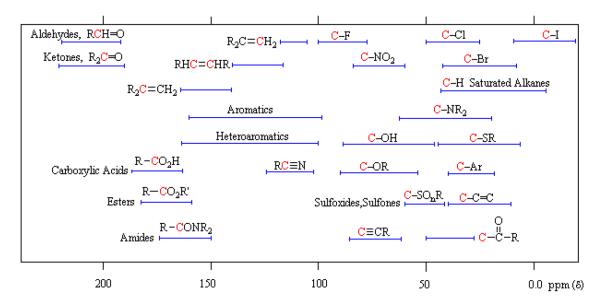
frequency, cm ⁻¹	bond	functional group	
3640-3610 (s, sh)	O-H stretch, free hydroxyl	alcohols, phenols	
3500-3200 (s,b)	O-H stretch, H-bonded	alcohols, phenols	
3400-3250 (m)	N-H stretch	1°, 2° amines, amides	
3300-2500 (m)	O-H stretch	carboxylic acids	
3330-3270 (n, s)	-C≡C-H: C-H stretch	alkynes (terminal)	
3100-3000 (s)	C-H stretch	aromatics	
3100-3000 (m)	=C-H stretch	alkenes	
3000-2850 (m)	C-H stretch	alkanes	
2830-2695 (m)	H-C=O: C-H stretch	aldehydes	
2260–2210 (v)	C≡N stretch	nitriles	
2260–2100 (w)	-C≡C- stretch	alkynes	
1760–1665 (s)	C=O stretch	carbonyls (general)	
1760–1690 (s)	C=O stretch	carboxylic acids	
1750–1735 (s)	C=O stretch	esters, saturated aliphatic	
1740–1720 (s)	C=O stretch	aldehydes, saturated aliphatic	
1730–1715 (s)	C=O stretch	α , β -unsaturated esters	
1715 (s)	C=O stretch	ketones, saturated aliphatic	
1710–1665 (s)	C=O stretch	α , β -unsaturated aldehydes, ketones	
1680–1640 (m)	-C=C- stretch	alkenes	
1650-1580 (m)	N–H bend	1° amines	
1600-1585 (m)	C-C stretch (in-ring)	aromatics	
1550–1475 (s)	N-O asymmetric stretch	nitro compounds	
1500-1400 (m)	C-C stretch (in-ring)	aromatics	
1470-1450 (m)	C-H bend	alkanes	
1370-1350 (m)	C-H rock	alkanes	
1360-1290 (m)	N-O symmetric stretch	nitro compounds	
1335-1250 (s)	C-N stretch	aromatic amines	
1320-1000 (s)	C–O stretch	alcohols, carboxylic acids, esters, ethers	
1300-1150 (m)	C-H wag (-CH ₂ X)	alkyl halides	
1250-1020 (m)	C-N stretch	aliphatic amines	
1000-650 (s)	=C-H bend	alkenes	
950–910 (m)	O–H bend	carboxylic acids	
910-665 (s, b)	N–H wag	1°, 2° amines	
900–675 (s)	C–H "oop"	aromatics	
850–550 (m)	C-Cl stretch	alkyl halides	
725–720 (m)	C-H rock	alkanes	
700–610 (b, s)	–C≡C–H: C–H bend	alkynes	
690–515 (m)	C-Br stretch	alkyl halides	

m=medium, w=weak, s=strong, n=narrow, b=broad, sh=sharp

¹H NMR Correlation Chart

¹H CHEMICAL-SHIFT CALCULATIONS FOR SUBSTITUTED ALKENES

R_{trant}C=C


 $\delta_{\rm H}$ ppm = 5.25 + δ_{gem} + δ_{cls} + δ_{prans}

Substituents (-R)	δ_{gem}	δ _{cls}	δ_{trans}
Saturated carbon groups			
Alkyl	0.44	-0.26	-0.29
-CH2-O-	0.67	-0.02	-0.07
Aromatic groups			
$-C_{0}H_{5}$	1.35	0.37	-0.10
Carbonyl, acid derivatives, and	nitrile		
COR	1.10	1.13	0.81
-COOH	1.00	1.35	0,74
-COOR	0.84	1.15	0.56
-CmN	0.23	0.78	0.58
Oxygen groups			
-OR	1.18	-1.06	-128
-OCOR	2.09	-0.40	-0.67
Nitrogen groups			
-NR ₂	0.80	-1.26	-121
NO2	1.87	1.30	0.62
Halogen groups			
-F	1.54	0.40	-1.02
-Cl	1.08	0.19	0.13
B.	1.04	0.40	0.55
-I	1.14	0.81	0.88

¹H CHEMICAL-SHIFT CALCULATIONS FOR SUBSTITUTED BENZENE RINGS

		$pm = 7.27 + \Sigma \delta$	
$\downarrow_{H_{px}}$	H _{mela}	0	
Substituents (R)	8 ortho	Supeta	Spara
Saturated carbon groups			
Alkyl	-0.14	-0.06	-0.17
-CH ₂ OH	~0.07	-0.07	-0.07
Aldehydes and ketones			
CHO	0.61	0.25	0.35
-COR	0.62	0.14	0.21
Carboxylic acids and derivatives	5		
-COOH	0.85	0.18	0.34
-COOR	0.71	0.10	0.21
-C=N	0.25	0.18	0.30
Oxygen groups			
-OH	-0.53	-0.17	-0.45
-OCH3	0.48	-0.09	-0.44
-OCOCH ₃	-0.19	-0.03	-0.19
Nitrogen groups			
-NH ₂	0.80	-0.25	-0.65
-NO ₂	0.95	0.26	0.38
Halogen groups			
-F	-0.29	-0.02	-0.23
-CI	0.03	-0.02	-0.09
-Br	0.18	-0.08	-0.04
-I	0.38	-0.23	-0.01

¹³C NMR Correlation Chart

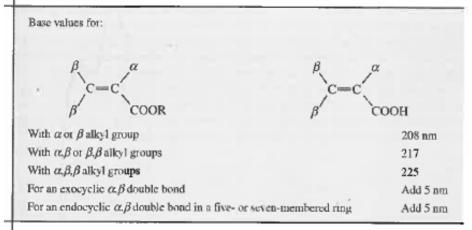
	γ—β		,α'-β'-	γ'		
		α, C=	=C a'			
Substituent	a	ß	r	a'	β'	r
Carbon	10.6	7.2	-1.5	-7.9	-1.8	-1.5
$-C_6H_3$	12			-11		
-OR	29	2		-39	-1	
- OCOR	18			-27		
-COR	15			6		
-COOH	4			9		
-CN	-16			15		
-Ci	3	-1		-6	2	
-Br	-8	0		-1	2	
-I	-38			7		

¹³C SUBSTITUENT INCREMENTS FOR ALKENE (VINYL) CARBONS^{a,b}

^aIn the upper chains, if a group is in the β or γ position, the preceding atoms (α and/or β) are assumed to be carbon atoms. Add these increments to the base value of ethylene (123.3 ppm).

^bCalculate C1 as shown in the diagram. Redefine C2 as C1 when estimating values for C2.

Substituent Y	α (ipso)	o (ortho)	m (meta)	p (para)
-CH3	9.3	0.7	-0.1	-2.9
CH ₂ CH ₃	11.7	-0.5	0	-2.6
CH(CH2)2	20.1	-2.0	-0.3	-2.5
C(CH ₃) ₃	18.6	-3.4	-0.4	-3.1
-CH=CH ₂	9.1	-2.4	0.2	-0.5
-C=CH	-6.2	3.6	-0.4	-0.3
-C ₆ H ₅	8.1	-1.1	-0.5	-1.1
-CHO	8.2	1.2	0.6	5.8
-COCH ₃	8.9	-0.1	-0.1	4.4
-COC ₆ H ₅	9.1	1.5	-0.2	3.8
-COOH	2.1	1.6	-0.1	5.2
-COOCH ₃	2.0	1.2	-0.1	4.3
CN	-16.0	3.6	0.6	4.3
-NH ₂	18.2	-13.4	0.8	10.0
-N(CH ₃) ₂	16.0	-15.7	0.8	-10,5
-NHCOCH ₃	9.7	-8.1	0.2	-4.4
-NO ₂	19.6	-4.9	0.9	6.0
-OH	28.8	-12.7	1.6	-7.3
-OCH3	33,5	-14.4	1.0	-7.7
-OCOCH ₃	22,4	-7.1	-0.4	-3.2
-F	33.6	-13.0	1.6	-4.5
-Cl	5.3	0.4	1.4	-1.9
-Br	-5.4	3.4	2.2	-1.0
1	-31,2	8.9	1.6	-1.1


13C SUBSTITUENT INCREMENTS FOR BENZENE RINGS (PPM)*

"Add these increments to the base value for henzene-ring carbons (128.5 ppm).

EMPIRICAL	RULES	FOR	ENONES

$\beta = \alpha = \beta = \beta = 0$	$\begin{array}{c} \delta & \gamma & \beta & \alpha \\ & & & & \\ \delta - C = C - C = C - C \end{array}$
Base values.	
Six-membered ring or acyclic parent enone	= 215 nm
Five-membered ring parent enone	= 202 nm
Acyclic dienone	= 245 nm
ncrements for:	
Double-bond-extending conjugation	30
Alkyl group or ring residue	a 10
	β 12
	γ and higher 18
Polar groupings:	
-OH	a 35
	β 30
	δ 50
OCOCH3	α.β.δ 6
-OCH ₃	α 35
	β 30
	γ 17
	\$ 31
-C1	α 15
	β 12
-Br	α 25
	β 30
-NR ₂	β 95
Exocyclic double bond	5
Homocyclic diene component	39
Solvent correction	$\frac{\text{Variable}}{\lambda_{\text{max}}^{\text{EOH}}(\text{calc}) = \text{Total}}$

EMPIRICAL RULES FOR UNSATURATED ACIDS AND ESTERS

