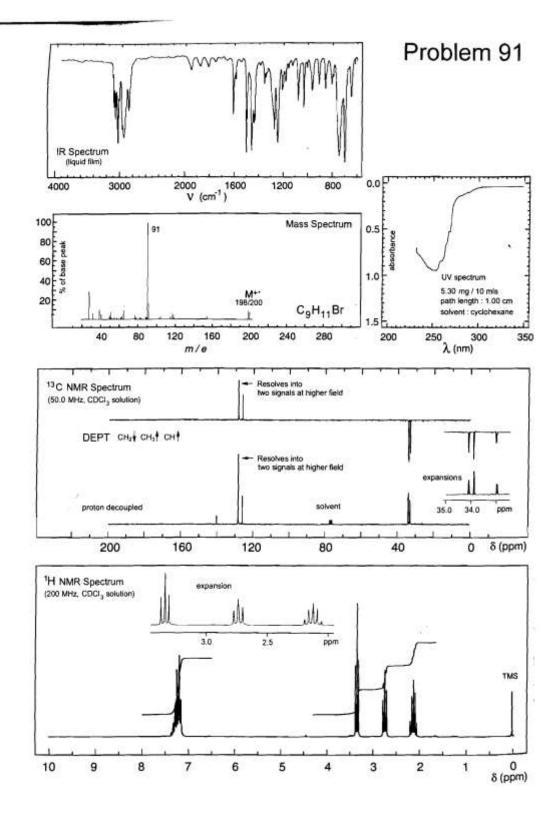
CHEMISTRY HONOURS EXAMINATION: JUNE 2018

MODULE: CEM 8X04- INSTRUMENTAL ANALYSIS

Examiners: Prof R. Meijboom, Dr E.M. Mmutlane and Dr N.S. Bingwa


Moderator: Dr R. Mampa (University of Limpopo)

INSTRUCTIONS

- (i) This examination is out of a Total of 100 Marks and you have 3 Hours (180 Minutes) to complete it. No extra time will be allowed for any reason.
- (ii) The Exam comprises 2 Sections. PLEASE ANSWER EACH SECTION IN A SEPARATE BOOK.
- (iii) The use of cell phones and other electronic communication devices is forbidden and they must be switched off. No data/image storing devices, including calculators capable of such, are permitted in this examination.
- (iv) This is a closed book examination. You are NOT allowed to have any book, memorandum, notes, paper, photographs, document or written/printed material other than the question paper and the answer books provided by the examiner/invigilator. If you need paper for rough work, an additional exam answer sheet will be given to you, which must be clearly labelled as rough work: not for marking, and handed in together with the question paper and all your answer books.

QUESTION 1

Consider the following spectra:

180

a) Determine the degree of unsaturation

The molecular formula is $C_9H_{11}Br$ so one can determine the degree of unsaturation. Replace the Br by H to give an effective molecular formula of C_9H_{12} (C_nH_m) which gives the degree of unsaturation as (n - ml2 + I) = 9 - 6 + I = 4. The compound must contain the equivalent or 4 *TC* bonds and/or rings. This degree of unsaturation would be consistent with one aromatic ring (with no other elements of unsaturation).

- b) Identify the structural elements based on the Mass Spectrum. (4)
 From the molecular ion, the molecular weight is 198/200. The molecular ion has two peaks of equal intensity separated by two mass units. This is the characteristic pattern for a compound containing one bromine atom. 198 – 91 = 107. One peak for 107, obviously loss of Br (no double peak); Br = 79; 28 = C₂H₄
- c) Calculate the extinction coefficient

$$\varepsilon_{255} = \frac{199 \times 0.95}{0.53 \times 1.0} = 357$$

- d) What structural elements does the UV-vis spectrum suggest? (2)
 The ultraviolet spectrum shows a typical benzenoid absorption without further conjugation or auxochromes. This would also be consistent with the Ph-CH₂- group.
- e) Identify the structural elements based on the IR spectrum. (4) There is no useful additional information from infrared spectrum, other than C-H stretching frequency at around 3000 cm⁻¹ (2 pt) and the four overtones for a monosubstituted aromatic between 1640 and 2000 (2 pt).
- f) Estimate the integrals for each proton and tabulate them

			· · · · · · · · · · · · · · · · · · ·
δ 1H (ppm)	integral	Relative No of H	Rounded No of H

δ ¹ H (ppm)	Integral (mm)	Relat		o. of hyd unded)	rogens
~ 7.2	19		4.9	9 (5H)	
~ 3.3	8	~	2	(2H)	
~ 2.8	8		2	(2H)	
~ 2.2	8		2	(2H)	

g) What structural elements do the ¹H NMR spectra suggest?

(8)

From the ¹H NMR, there are 5 protons near δ ~7.2 which strongly suggests a monosubstituted benzene ring, consistent with MS and UV-vis data. The Ph-CH₂- group is confirmed. (2 pt)

(2)

(4)

The triplet at approximately δ 3.3 ppm of intensity 2H suggests a CH₂ group. The downfield chemical shift suggests a -CH₂-X group with X being an electron withdrawing group (probably bromine). The triplet splitting indicates that there must be another CH₂ as a neighbouring group. (2 pt)

In the expanded proton spectrum 1 ppm = 42 mm and since this is a 200 MHz NMR spectrum, therefore 200 Hz = 42 mm. The triplet spacing is measured to be 1.5 mm *i.e.* 1 Hz and this is typical of vicinal coupling (3 JHH).

The triplet at approximately δ 2.8 ppm of intensity 2H in the ¹H NMR spectrum suggests a CH₂ with one CH₂ as a neighbour. The spacing of this triplet is almost identical with that observed for the triplet near δ 3.3 ppm. (2 pt)

The quintet at approximately δ 2.2 ppm. of intensity 2H has the same spacings as observed in the triplets near δ 2.8 and δ 3.3 ppm. This signal is consistent with a CH₂ group coupled to *two* flanking CH₂ groups. A sequence -CH₂-CH₂-CH₂- is revealed. (2 pt)

h) What structural elements does the ¹³C NMR suggest?

(6)

From the ¹³C spectrum there are 7 carbon environments: 4 carbons are in the typical aromatic/olefinic chemical shift range and 3 carbons in the aliphatic chemical shift range. The molecular formula is C9H11Br so there must be an element (or elements) of symmetry to account for the 2 carbons not apparent in the ¹³C spectrum. (2 pt)

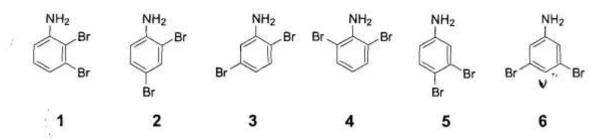
From the ¹³C DEPT spectrum there are 3 CH resonances in the aromatic/olefinic chemical shift range and 3 CH₂ carbons in the aliphatic chemical shift range. (2 pt)

From the ¹³C NMR spectrum, there is one resonance in the ¹³C{¹H} spectrum which does not appear in the ¹³C DEPT spectrum. This indicates one quaternary (non-protonated) carbon. There are 4 resonances in the aromatic region, $3 \times CH$ and $1 \times quaternary$ carbon, which is typical of a monosubstituted benzene ring. (2 pt)

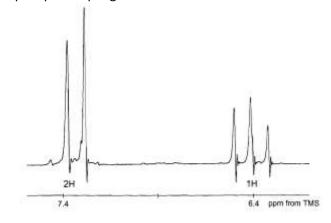
i) Draw and name the structure which is consistent with the above analysis.

(6)

[4]


Br

1-bromo-3-phenylpropane


C₉H₁₁Br

QUESTION 2

A portion of the 90 MHz ¹H NMR spectrum (5% in CDCl₃) of one of the six possible isomeric dibromoanilines is given below. Only the resonances of the aromatic protons are shown.

Determine which is the correct structure for this compound using arguments based on symmetry and the magnitudes of spin-spin coupling constants.

Of the 6 isomeric anilines, only compounds **4** and **6** have the correct symmetry to give a spectrum with only two chemical shifts in the aromatic region, in the ratio 2:1. (2 pt)

Both **4** and **6** would give A2X spin systems. The measured coupling constant is 7.7 Hz which is in the range for protons which are *ortho* to each other. Compound **4** is the correct answer. (2 pt)

QUESTION 3

[20]

An organic compound has the molecular formula $C_{12}H_{17}NO$. Identify the compound using the spectroscopic data given below.

v_{max} (KBr disc): 3296 m, 1642 s cm⁻¹.

¹H NMR (CDCl₃ solution): δ 7.23-7.42, m, 5H; 5.74, br s, exch. D₂0, 1H; 5.14, *q*, *J* 6.7 Hz, 1H; 2.15, *t*, *J* 7.1 Hz, 2H; 1.66, m, 2H; 1.48, *d*, *J* 6.7 Hz, 3H; 0.93, *t*, *J* 7.3 Hz, 3H ppm.

¹³C{¹H} NMR (CDCl₃ solution): δ 172.0 (C), 143.3 (C), 128.6, 127.3, 126.1, 48.5 (CH), 38.8 (CH₂), 21.7 (CH₃), 19.1 (CH₂), 13.7 (CH₃) ppm.

Mass spectrum: *m/e* 191 (M⁺, 40), 120 (33), 105 (58), 104 (100), 77 (18), 43 (46).

IR: C=O; OH or NH \rightarrow can only be NH as only one O in molecule. (2 pt)

¹H NMR:

7.23-7.42: monosubstituted aromatic (2 pt)

5.74: NH (1 pt)

5.14 q couples with 1.48 d (methyl) suggests $RR'CH-CH_3$ Shifted upfield so probably attached to heteroatom. (2 pt)

2.15 t (2H); 1.66 m (2H), 0.93 t (3H) suggests CH₂CH₂CH₃; 2.15 typically for CH₂ next to C=O (2 pt) ¹³C NMR:

172: C=O (1 pt)

143, 128, 127, 126: monosubstituted aromatic. (1 pt)

48: CH, confirms 5.14 in 1H NMR (1 pt)

21.7: methyl, confirms RR'CH-CH₃. Shifted upfield so probably attached to heteroatom. (1 pt)

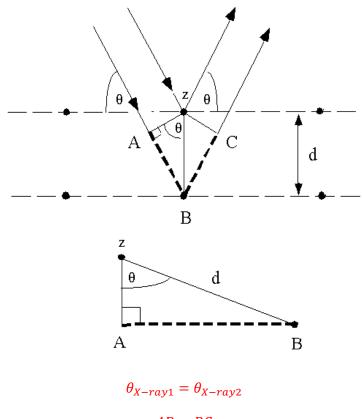
38, 19, 13: CH₂CH₂CH₃; shifted upfield, typically for CH₂ next to C=O (1 pt)

Fragments to consider: C_6H_5 -R; RR'CHCH₃ (one R is heteroatom); RC(=O)CH₂CH₂CH₃; RR'NH Note: not a heteroatom next to $C_6H_5...$ MS: 105 is fragment for C_8H_9 , suggesting $C_6H_5CH(CH_3)R$ (2 pt) Suggested structure:

N-(1-methyl-1-phenylethyl)butyramide C₁₂H₁₇NO

Question 4

[8]


How do DEPT experiments differ from normal NMR experiments? Distinguish between the various (3) **DEPT** techniques.

DEPT Spectra differentiate between CH, CH_2 and CH_3 groups in a compound and guaternary carbons (carbons C-4a, C-5 and C-8a in the structure) are always missing from DEPT spectra because the large one-bond heteronuclear coupling $({}^{1}J_{XH})$ is used for polarization transfer. <u>DEPT 135</u>- yields spectra with CH (carbons C-1, C-3, C-6, C-7 and C-8 in the structure) and CH₃ (carbons C-9 and C-10 in the structure) in opposite (normal/positive) phase to CH₂ signals (carbon C-4). <u>DEPT 90</u>- yields spectra with only CH signals. DEPT 45- yields spectra with positive CH, CH₂, and CH₃ signals (all protonated carbons).

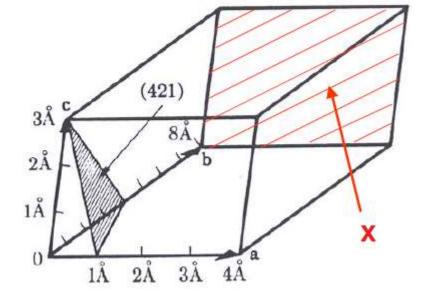
SECTION 2: SURFACE CHARACTERIZATION TECHNIQUES

QUESTION 5 [10] (5)

a) From the diagrams below, if $n\lambda = AB + BC$, derive Bragg's equation.

AB = BC

But $n\lambda = AB + BC$ this implies that


$$sin\theta = \frac{AB}{d}$$
$$AB = dsin\theta$$

Substitute AB by $n\lambda/2$

$$n\lambda = 2dsin\theta$$

 $n\lambda = 2AB$

b) If you are given the unit cell below with a triangle-like plane and plane X,

Complete the table below

	Tr	iangle-like p	olane		Plane X	
	а	b	С	А	В	С
Axial length (Å)	4	8	3	4	8	3
Intercept length (Å)	1	4	3	-	8	-
Fractional indices	1/4	1/2	1	0	1	0
Miller indices	4	2	1	0	1	0

QUESTION 6

a) What is an Auger electron?

An Auger electron is an ejected electron as a result of ionization of a gas by bombardment with X-rays.

- b) If a peak in an XPS spectrum is identified as 2p3/2. What is the electron's (i) orbital momentum (*l*), (ii) spin momentum (s), and the total momentum (j)?
 (3)
 - (i) orbital momentum (l) = 1
 - (ii) spin momentum (s) = 1/2
 - (ii) total momentum (j) = 3/2
- c) Differentiate between the two photoelectron peaks of Pt, 4f7/2 and 4f5/2 (3)

4f7/2 has I = 3, s = 1/2 and j = $(3 + \frac{1}{2} = 7/2)$

4f5/2 has I = 3, s = -1/2 and j = (3 - 1/2 = 5/2)

d) Explain the increase in binding energy as the oxidation state of an atom increases. (2)

(5)

[10]


(1)

ntun

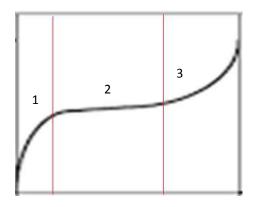
Increase in oxidation state results in electrons strongly attracted to the nucleus, thus more energy is required to ionise the atom.

e)	How can you eliminate Auger electron peaks from an XPS spectrum?	(1)
	By using a dual anode.	
QUEST	ION 7	[10]
a)	Explain the formation of hysteresis loop in the type IV isotherm. Use diagram(s) where	
	necessary.	(2)

Type IV isotherms occur when capillary condensation occurs. Gases condense in the tiny capillary pores of the solid at pressures below the saturation pressure of the gas. At the lower pressure regions, it shows the formation of a monolayer followed by a formation of multilayers.

b) Derive the BET equation from first principles.

(5)


From the Langmuir theory, quantity of gas adsorbed and pressure (at pressure = P and volume of gas adsorbed when monolayer forms, v_m) are related by

$$\frac{p}{v} = \frac{1}{v_m b} + \frac{p}{v_m}$$

Equating rate of condensation of gas molecules onto an already adsorbed layer to rate of evaporation from that layer and summing for an infinite layers,

$$v = \frac{v_m C p}{(p_0 - p)[1 + (C - 1)\frac{p}{p_0}]}$$

c) Explain regions I,II and III in the type II isotherm shown below in terms of adsorption.
 Determine and briefly explain where you are most likely to get reliable surface area information in this isotherm. (3)

Region I: The rapid adsorption of gaseous molecules on the energetic regions of the solid.

Region II: Attachment of additional gas molecules on sites already occupied, i.e., additional layers are forming (multilayer formation)

Region III: Bulk condensation of gaseous molecules to a liquid.

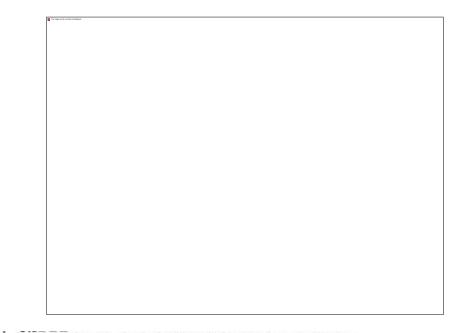

REFERENCE TABLES

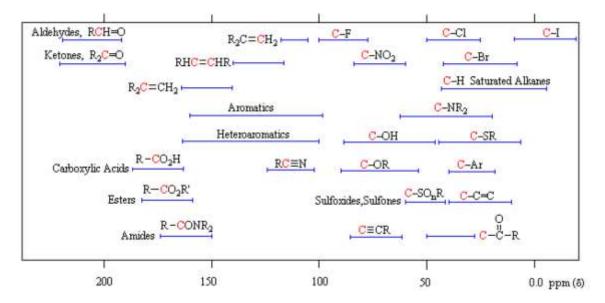
Table of Characteristic IR Absorptions

frequency, cm ⁻¹	bond	functional group
3640-3610 (s, sh)	O-H stretch, free hydroxyl	alcohols, phenols
3500–3200 (s, sil)	O-H stretch, H-bonded	alcohols, phenols
3400-3250 (m)	N-H stretch	1°, 2° amines, amides
3300-2500 (m)	O-H stretch	
3330–3270 (n, s)	-C≡C-H: C-H stretch	carboxylic acids
CALCULATION C ROAD CON SCIENCE IN	C-H stretch	alkynes (terminal)
3100-3000 (s)		aromatics
3100-3000 (m)	=C-H stretch	alkenes
3000-2850 (m)	C-H stretch	alkanes
2830-2695 (m)	H-C=O: C-H stretch	aldehydes
2260–2210 (v)	C≡N stretch	nitriles
2260–2100 (w)	-C≡C- stretch	alkynes
1760–1665 (s)	C=O stretch	carbonyls (general)
1760–1690 (s)	C=O stretch	carboxylic acids
1750–1735 (s)	C=O stretch	esters, saturated aliphatic
1740–1720 (s)	C=O stretch	aldehydes, saturated aliphatic
1730–1715 (s)	C=O stretch	α , β -unsaturated esters
1715 (s)	C=O stretch	ketones, saturated aliphatic
1710-1665 (s)	C=O stretch	α , β -unsaturated aldehydes, ketones
1680-1640 (m)	-C=C- stretch	alkenes
1650-1580 (m)	N-H bend	1° amines
1600-1585 (m)	C-C stretch (in-ring)	aromatics
1550-1475 (s)	N-O asymmetric stretch	nitro compounds
1500-1400 (m)	C-C stretch (in-ring)	aromatics
1470-1450 (m)	C-H bend	alkanes
1370-1350 (m)	C-H rock	alkanes
1360-1290 (m)	N-O symmetric stretch	nitro compounds
1335-1250 (s)	C-N stretch	aromatic amines
1320-1000 (s)	C-O stretch	alcohols, carboxylic acids, esters, ethers
1300–1150 (m)	C-H wag (-CH ₂ X)	alkyl halides
1250-1020 (m)	C-N stretch	aliphatic amines
1000-650 (s)	=C-H bend	alkenes
950-910 (m)	O-H bend	earboxylic acids
910-665 (s, b)	N-H wag	1°, 2° amines
900-675 (s)	C-H "oop"	aromatics
850-550 (m)	C-Cl stretch	alkyl halides
725–720 (m)	C-H rock	alkanes
700–610 (b, s)	C≡CH: CH bend	alkynes
690–515 (m)	C-Br stretch	alkyl halides

m=medium, w=weak, s=strong, n=narrow, b=broad, sh=sharp

¹H NMR Correlation Chart

¹H CHEMICAL-SHIFT CALCULATIONS FOR SUBSTITUTED ALKENES


R_{trant} C-C R_{gen}

 $\delta_{\rm H} \, {\rm ppm} = 5.25 + \delta_{gem} + \delta_{cls} + \delta_{trans}$

Substituents (-R)	8 _{gem}	δ _{cls}	δ _{trans}
Saturated carbon groups			
Alkyl	0.44	-0.26	-0.29
-CH2-O-	9.67	-0.02	-0.07
Aromatic groups			
-C ₆ H ₅	1.35	0.37	-0.10
Carbonyl, acid derivatives, and	nitrile		
COR	1.10	1.13	0.81
-COOH	1.00	1.35	0.74
-COOR	0.84	1.15	0.56
-C#N	0.23	0.78	0.58
Oxygen groups			
-OR	1.18	-1.06	-1.28
-OCOR	2 09	-0.40	-0.67
Nitrogen groups			
-NR ₂	0.80	-1.26	-121
-NO2	1.87	1.30	0.62
Halogen groups			
-F	1.54	-0.40	-1.02
-Ci	1.08	0.19	013
B:	1.04	0.40	0.55
-I	1.14	0.81	0.88

¹H CHEMICAL-SHIFT CALCULATIONS FOR SUBSTITUTED BENZENE RINGS Hortho $\delta_{\rm H}$ ppm = 7.27 + $\Sigma \delta$ Hmeta . H_{para} Substituents (--R) 8 ortho Suneto Spara Saturated carbon groups Alkyl -0.14 -0.06 -0.17 -CH2OH -0.07 -0.07 -0.07 Aldehydes and ketones -CHO 0.61 0.25 0.35 -COR 0.62 0.14 0.21 Carboxylic acids and derivatives -COOH 0.85 0.18 0.34 -COOR 0.71 0.10 0.21 -C+N 0.25 0.18 0.30 Oxygen groups -OH -0.53 -0.17-0.45 -OCH₃ -0.48 -0.09 -0.44 -OCOCH₃ -0.19 -0.03 -0.19 Nitrogen groups $-NH_2$ -0.80 -0.25 -0.65 $-NO_2$ 0.95 0.26 0.38 Halogen groups -F -0.29 -0.02 -0.23 --C1 0.03 -0.02 -0.09 -Br 0.18 -0.08-0.04 -I0.38 -0.23 -0.01

¹³C NMR Correlation Chart

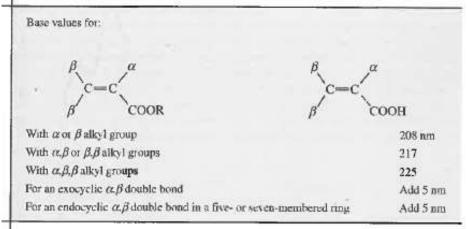
	γ—¢		$=C_{\alpha'}^{\alpha'-\beta'-\beta'-\beta'-\beta'-\beta'-\beta'-\beta'-\beta'-\beta'-\beta'-\beta'-\beta'-\beta'$	-y'		
Substituent	a	ß	r	a'	β'	r
Carbon	10.6	7.2	-1.5	-7.9	-1.8	-1.5
-C ₅ H ₃	12			-11		
-OR	29	2		-39	-1	
- OCOR	18			-27		
-COR	15			6		
-COOH	4			9		
-CN	-16			15		
-Cl	3	-1		-6	2	
-Br	-8	0		-1	2	
-1	-38			7		

¹³C SUBSTITUENT INCREMENTS FOR ALKENE (VINYL) CARBONS^{3, b}

⁶In the upper chains, if a group is in the β or γ position, the preceding atoms (α and/or β) are assumed to be carbon atoms. Add these increments to the base value of ethylene (123.3 ppm).

^bCalculate CI as shown in the diagram. Redefine C2 as C1 when estimating values for C2.

Substituent Y	α (ipso)	o (ortho)	m (meta)	p (para)
-CH,	9.3	0.7	-0.1	-2.9
-CH2CH3	11.7	-0.5	0	-2.6
-CH(CH ₂) ₂	20.1	-2.0	-0.3	-2.5
-C(CH ₃) ₃	18.6	-3.4	-0.4	-3.1
-CH=CH ₂	9.1	-2.4	0.2	-0.5
-C=CH	-6.2	3.6	-0.4	-0.3
-C ₆ H ₅	8.1	-1.1	-0.5	-1.1
-СНО	8.2	1.2	0.6	5.8
-COCH ₃	8.9	-0.1	-0.1	4.4
-COC ₆ H ₅	9.1	1.5	-02	3.8
-COOH	2.1	1.6	-0.1	5.2
-COOCH3	2.0	1.2	-0.1	4,3
-CN	-16.0	3.6	0.6	4.3
-NH2	18.2	-13.4	0.8	-10.0
-N(CH ₃) ₂	16.0	-15.7	0.8	-10.5
-NHCOCH3	9.7	-8.1	0.2	-4.4
-NO ₂	19.6	-4.9	0.9	6.0
-OH	28.8	-12.7	1.6	-7.3
-OCH3	33,5	-14.4	1.0	-7.7
-OCOCH3	22.4	-7.1	-0.4	-3.2
-F	33.6	-13.0	1.6	-4.5
C1	5.3	0.4	1.4	-1.9
-Br	-5,4	3.4	2.2	-1.0
I	-31,2	8.9	1.6	-1.1


¹³C SUBSTITUENT INCREMENTS FOR BENZENE RINGS (PPM)^a

"Add these increments to the base value for henzene-ring carbons (128 5 ppm).

EMPIRICAL RULES FOR ENONES	EMPIRICAL	RULES	FOR	ENONES
----------------------------	-----------	-------	-----	--------

<u>-c=c-c=0</u>	8-c=c-c=c-	C
ase values.		
Six-membered ring or acyclic parent enone	= 215 ni	m
Five-membered ring parent enone	= 202 m	m
Acyclic dienone	= 245 m	m
crements for:		
Double-bond-extending conjugation	3	0
Alkyl group or ring residue	a 1	0
	β 1	2
	γ and higher 1	8
olar groupings:		
-OH	a 3	5
	β 3	0
	8 5	0
-OCOCH3	α.β,δ	6
-OCH ₃	α 3	15
	β 3	0
		7
		11
-Cl	α 1	
	β 1	
-Br	α 2	
	β 3	
-NR ₂	10 C C C C C C C C C C C C C C C C C C C	15
cocyclic double bond		5
omocyclic diene component		9
olvent correction	$\frac{\text{Variabl}}{\lambda_{\text{max}}^{\text{EaCH}}(\text{calc}) = \text{Tot}}$	-

EMPIRICAL RULES FOR UNSATURATED ACIDS AND ESTERS

