Question 1 (20 Marks)

1) List 2 minerals with their chemical formulae that are typical of a rock 'Eclogite' (4marks).

Minerals names	Minerals formulae
1) Pyrope	$Mg_3Al_2(Si,Al)_3O_{12}$
2) Omphacite	(Ca,Na)(Mg,Fe ²⁺ ,Fe ³⁺ ,Al)SiO ₂ O ₆

2) List 3 possible minerals with their chemical formulae that are typical of a rock 'blueschist' (6 marks)

Minerals names	Minerals formulae
1) Glaucophane	$Na_2Mg_3Al_2(Si_8O_{22})(OH)_2$
2) Kyanite	Al ₂ SiO ₅ or Al ₂ O ₃ SiO ₂
3) Lawsonite	CaAl ₂ (Si ₂ O ₇)(OH) ₂ .H ₂ O

3) List 1 silicate mineral with its chemical formulae that is typical of a 'granulite' rock of pelitic composition (2 marks)

Sillimanite	Al ₂ SiO ₅ or Al ₂ O ₃ SiO ₂
-------------	---

4) List 1 silicate mineral with its chemical formulae that is typical of contact metamorphic rocks of pelitic composition (2 marks)

Andalusite	Al ₂ SiO ₅ or Al ₂ O ₃ SiO ₂	
------------	---	--

- 5) List 2 typical minerals of an amphibolite (4 marks) Hornblende and plagiocalse
- 6) List 1 typical mineral of a mafic rock metamorphosed under greenschist facies (2 marks) chlorite

Question 2 (30 marks)

Based on the mineral composition and textures of the four different metamorphic rocks numbered from 1 to 4 in the table below:

Mineralogy	Texture		
Rock 1	A bleu rock with medium		
30% glaucophane, 20%	grained texture and light		
lawsonite, 20% garnet and 30%	foliation marked by the		
albite.	alignment of glaucophane		
	minerals.		
Rock 2	Very fine grained texture with		
30% and alusite, 10% garnet, 20%	some large crystals of		
quartz, 20% biotite and 20%	andalusite.		
plagioclase	No foliation is observed.		
Rock 3	Coarse grained texture with no		
30% Hornblende, 20% Garnet	foliation		
5% Quartz and 5% opaques, 30%			
Plagioclase,			
Rock 4	medium grained texture with		
20% Staurolite, 10% Muscovite	staurolite porphyroblasts and		
and 20% Biotite, 20% garnet,	strong foliation marked by the		
30% Quartz	alignment of micas.		
D - 1	1. 1 1. 1 C 1. 1		

Rock No.	Rock name	Type of metamorphism	Metamorphic facies and grade	Possible parent rock (protolith)
Rock 1 (6 marks)	Bleuschist	Regional metamorphism/Subduction	Bleuschist Metam/HP-LT	Mafic rock
Rock 2 (6 marks)	Andaluste- hornfels	Contact Metam	Hbd-Hornfels/Low to Int T	Pelitic/shale
Rock 3 (6 marks)	Amphibolite	Regional/Burial/Barovian	Amph facies/Interm	Mafic (eg. basalt/gabbro)
Rock 4 (6 marks)	Staurolite- schist	Regional/Burial/Barovian	Amph facies/Inter	Pelitic/shale

Question 3 (30 marks): Give the definition of the following terms and illustrate with sketches or examples when possible: see chapter 3 and 4 lectures notes

- a) Isograde
- **b)** Paragenese
- c) Poikiloblast,
- d) Pseudomorph
- e) Geothermal gradient
- f) Index Mineral

Question 4 (20 marks)

What is the difference between shock metamorphism and contact metamorphism?

Discuss and illustrate with examples from South Africa

Shock metamorphism is caused by meteorite impact, it's a HP and HT temperature type of metamorphism, while contact metamorphism is caused by intrusion of magma, it is a low Pressure, medium to High T type of metamorphism. The 2 types occur at 2 different contexts, the 1st one is more local comparing to the 2nd one which can local or regional in extend. The examples in SA are Vredefort impact crater metamorphism and Bushveld contact metamorphism. For more information/details see relevant chapters on these 2 types of metamorphism in the lectures notes.