Question 8:

Narrow rifts - Upper Rhine Graben

- Steep normal faults

Narrow rifts - East African Rift

- Major volcanism
- slightly alkaline to tholeiitic basalts ($\sim 50 \% \mathrm{SiO}_{2}$)
- Higher amounts of partial melting of lithospheric mantle
- Rapid extension = more melting (think back to fast and slow spreading ridges)
- Alkalinity increase from graben axis to rift shoulder
- Kenya Rift shows decrease in alkalinity through time (extension speeding up)
- EAR show decreasing alkalinity (increasing extension) from south to north

Ensimatic island arc

Ensimatic island arc: Mariana Islands
volcanic arc

Subduction of oceanic lithosphere below oceanic lithosphere form ensimatic island arcs. Island arc is underlain by oceanic crust.

Sima - Silicon and Magnesium, signifying oceanic crust composition

Shallow Earthquakes

Buldge

- normal faults (horizontal extension)
- up to 25 km depth
- Faults provide pathways to seawater to penetrate oceanic lithosphere and to change it to serpentinite.

Intermediate Earthquakes

- Double seismic zone
- Upper zone = shear movement along plate boundary
- Lower zone = dehydration of lithospheric mantle serpentinite(dewatering = volume loss and microcracks $=$ weakening $=$ shear zones)

Deep Earthquakes

- Olivine transform to spinel (densification = volume loss and anticracks = weakening = shear zones)
- Shear not by a fracture plane but by superplasticity
- Fine-grained mineral grains slip past each other along their grain boundaries.
- Fast plastic deformation

Magmatic arc geochemistry (Batholiths and volcanoes)

- Low-K tholeiitic series
- Basalts and Fe-rich basaltic andesites and andesites
- Calc-alkaline series
- Andesite, Al-rich basalts, moderately enriched in K (some dacite and rhyolite in continents)
- Alkaline series
- Alkaline basalts, K-rich (shoshonitic lavas)
- Young subduction zones/near magmatic front
- Low depth mantle source (65-100 km)
- Old subduction zones
- Deeper mantle source (> 100 km)
- Most common series
- Old subduction zones
- Deeper mantle source (> 100 km)

UNIVERSITY $\overline{J O H A N N E S B U R G}$

- Least common

Question 9: Tectonic plates (20 marks)

9.1.

1 Pacific plate
2 Cocos plate
3 Nasca plate
4 Philippine sea plate
5 Antarctic plate
9.2. The plates rafer to the rheological lithosphere, the hard brittle outer shell of the earth. This includes the crust as well as the lithospheric mantle.
9.3.

Triple junctions stability

- Plot all three plate boundaries in velocity space
- If they cross in the same spot, the intersection is the $\mathbf{T J}$ is stable
- The intersection is the velocity of the TJ and how it will move relative to the plates
- If they do not cross the TJ is dynamically unstable
- TJ will cease to exist and evolve to a stable configuration

- RRR TJs are ideally stable because perpendicular bisectors of a triangle always intersect in a single point!
IF spreading is symmetrical

Triple junctions stability

- FFF TJs always unstable!

Question 10: Supercontinent cycle (20 marks)
10.1.

Rodinia $\quad 1100-750 \mathrm{Ma}$
Columbia $\quad 1800-1350 \mathrm{Ma}$
Gondwana $\quad 550-180 \mathrm{Ma}$
10.2.
K.C. Condie / Journal of African Earth Sciences 35 (2002) 179-183

Hawkesworth et al. (2009)

