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Please read the following instructions carefully:

ANSWER ALL QUESTIONS: 1-3



Constants:
c=3x10¥m.s! e=16x101YC h=6.626x103*]s
h=h/2r me=9.31x 103! kg mp=1.67 x 10?7 kg
a=529x10"m 1eV=16x101"]J &=28.85x1012C2m2N"!
k=138 x 102 JK!
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Potentially useful mathematical identities:

sin(a +b)=sinacosh+sinbcosa  cos(a+b)=cosacosh—sinasinb

a’> =b> +c* —2bccosd sin (2a) =2 sin a cos a
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QUESTION 1 [34]

a) Estimate the upper limit of the ground state energy of the infinite square well potential
(V(x) = 0 between x = 0 and x = a, and infinite elsewhere) using the variational method
with the test function
Y = Ax(a—x).
nh’
Cl2

How does this value compare with the actual ground state energy E, = ?  (10)

b) Briefly explain why ¥ = Aexp (—2 ’i"‘_”zj is a sensible test function to determine the

a
ground state energy of a helium atom using the variational method. %)
¢) What are the assumptions underpinning the WKB approximation? 3)

d) In the event that the particle is bound in a potential that is not infinite outside the range
x = ato x = b where E > V(x), the following relationship applies:

.[b p(x)dx = (n - %j zh  (proof not needed).
Use this to estimate the energies of a harmonic oscillator, i.e. a particle trapped inside a
potential V' (x) = %ma)zx2 : )

e) Draw the potential function for alpha particles in the vicinity of an atomic nucleus and
hence briefly explain why under some circumstances a nucleus may eject an alpha

particle in what is referred to as alpha decay. 7
QUESTION 2 [33]
a) Briefly discuss the nature of the wave function of a two-level system that is subject to a
Hamiltonian with a time-dependent perturbation term. 4)

b) Consider an electron in the ground state of a hydrogen atom, subjected to an electric
field potential of the form

V(t)=—eE zexp(—t/7).
1) Why would transitions between the ground state to the 2p state (n/m = 210) be far more
common than transitions between other states? (4)
i1) Hence explain (without doing any actual calculations) how you would use the 1-st
order 2-level system approximation to determine the probability (as a function of time)
that the electron undergoes a transition to the 2p state. (6)

¢) In a two-level system, the equation relating the populations N of ground state “a” and
excited state “b” is
dN,
dt

=-N,A-N,B,, p(®,)+ N, B, p(w,)

where p is the radiation field density, and 4, By, and By are the Einstein coefficients.
/...Q2c¢ (continued)
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Through comparison with the Planck and Boltzmann laws (both listed under the
formulas), confirm that

3
w'h
Bab = Bpa and A=——B,, 9)
T c

d) Consider a hydrogen-like atom where the wave function takes the form ym.
1) Given that [LZ,Z] =0, show that <l//,,,,,m, |Z l//n,m> =0 unless m'=m. (6)

i1) State another selection rule linked to the quantum number /, and explain the implica-
tion of such selection rules for transitions between different states of this atom.  (4)

QUESTION 3 [33]

a) Consider a very small particle scattering elastically off a hard sphere of radius R.
1) Show that the scattering angle equals

- b<R
0 - 2cos (b/R) b< . 6)

0 b>R
i1) Hence determine the differential cross section for this scenario. (4)
iii) Finally, confirm that the cross section is nR>. 3)

b) In quantum mechanical scattering theory, the scattered particle’s wave function is

approximated by:
y(r,0)= A{GXp(ikz) + £(0) M}

r
Briefly explain and justify the terms inside the square bracket. (6)

¢) The integral form of the Schrodinger equation stipulates that the wave function can be
written as

w () =y, (1) - jexp(ik|r_r°|)V(ro)w(ro)d3ro-

270’ =,
where yo is the solution to the free particle. Show that for the common case that |r| >>
ro|, the scattering amplitude therefore may be approximated by

1(0.9)=- 2;2 [expCik -, )V (x, W lr, Ja’r, 9)

d) Consider the expression for the scattering amplitude given by
m .

£0,8) = = [exp(=ik -1,V (i, Jr(r, ), .

27h

Without doing any calculations, explain in each case under what condition the following

approximations are valid:

) fO.h = [V, 3)
i) £(0)=- ;2”; [y (rysin(ir)ar )

END



