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Constants:   

c = 3  108 m.s–1 e = 1.6  10–19 C h = 6.626  10–34 J.s 
ħ = h/2π me = 9.31  10-31 kg mp = 1.67  10–27 kg  
a = 5.29  10–11 m 1 eV = 1.6  10–19 J  0 = 8.85  10–12 C2m–2N–1 
k = 1.38  10–23 J.K–1  
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For the ground state of a hydrogen-like atom: 
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Potentially useful mathematical identities: 
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QUESTION 1         [34] 
 

a) Estimate the upper limit of the ground state energy of the infinite square well potential 
(V(x) = 0 between x = 0 and x = a, and infinite elsewhere) using the variational method 
with the test function 

)( xaAx  . 

How does this value compare with the actual ground state energy 
2 2
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b) Briefly explain why 1 2exp 2
r r

A
a
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 

is a sensible test function to determine the 

ground state energy of a helium atom using the variational method.    (5) 
 
c) What are the assumptions underpinning the WKB approximation?   (3) 
 
d) In the event that the particle is bound in a potential that is not infinite outside the range 
x = a to x = b where E > V(x), the following relationship applies: 

1
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2

b
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p x dx n    

         (proof not needed). 

Use this to estimate the energies of a harmonic oscillator, i.e. a particle trapped inside a 

potential 2 21
( )

2
V x m x .         (9) 

e) Draw the potential function for alpha particles in the vicinity of an atomic nucleus and 
hence briefly explain why under some circumstances a nucleus may eject an alpha 
particle in what is referred to as alpha decay.       (7) 

 
 

QUESTION 2         [33] 
 

a) Briefly discuss the nature of the wave function of a two-level system that is subject to a 
Hamiltonian with a time-dependent perturbation term.     (4) 
 
b) Consider an electron in the ground state of a hydrogen atom, subjected to an electric 
field potential of the form 

 0( ) expV t eE z t    . 

i) Why would transitions between the ground state to the 2p state (nlm = 210) be far more 
common than transitions between other states?       (4) 
ii) Hence explain (without doing any actual calculations) how you would use the 1-st 
order 2-level system approximation to determine the probability (as a function of time) 
that the electron undergoes a transition to the 2p state.     (6) 
 
c) In a two-level system, the equation relating the populations N of ground state “a” and 
excited state “b” is 

)()( 00  abababb
b BNBNAN

dt

dN
  

where ρ is the radiation field density, and A, Bba and Bab are the Einstein coefficients. 

         /…Q2c (continued) 
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Through comparison with the Planck and Boltzmann laws (both listed under the 
formulas), confirm that 

   Bab = Bba  and  baB
c
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d) Consider a hydrogen-like atom where the wave function takes the form nlm. 

i) Given that   0, zLz , show that 0 nlmmln z  unless mm  .    (6) 

ii) State another selection rule linked to the quantum number l, and explain the implica-
tion of such selection rules for transitions between different states of this atom.  (4) 
 
 

QUESTION 3         [33] 
 

a) Consider a very small particle scattering elastically off a hard sphere of radius R. 
i) Show that the scattering angle equals 
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ii) Hence determine the differential cross section for this scenario.    (4) 
iii) Finally, confirm that the cross section is R2.      (3) 
 
b) In quantum mechanical scattering theory, the scattered particle’s wave function is 
approximated by: 
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Briefly explain and justify the terms inside the square bracket.    (6) 
 

c) The integral form of the Schrödinger equation stipulates that the wave function can be 
written as 

 . 

where ψ0 is the solution to the free particle. Show that for the common case that r >> 
r0, the scattering amplitude therefore may be approximated by 

      (9) 

 

d) Consider the expression for the scattering amplitude given by 

. 

Without doing any calculations, explain in each case under what condition the following 
approximations are valid: 
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