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Constants:   

c = 3  108 m.s–1 e = 1.6  10–19 C h = 6.626  10–34 J.s 
ħ = h/2π me = 9.31  10-31 kg mp = 1.67  10–27 kg  
a = 5.29  10–11 m 1 eV = 1.6  10–19 J  0 = 8.85  10–12 C2m–2N–1 
k = 1.38  10–23 J.K–1  

 
 
 
Formulae: 
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For the ground state of a hydrogen-like atom: 
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Potentially useful mathematical identities: 
 

  abbaba cossincossinsin     bababa sinsincoscoscos   
 

cos2222 bccba    sin (2a) = 2 sin a cos a 
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QUESTION 1         [34] 
 

a) Estimate the upper limit of the ground state energy of the infinite square well potential 
(V(x) = 0 between x = 0 and x = a, and infinite elsewhere) using the variational method 
with the test function 

)( xaAx  . 

How does this value compare with the actual ground state energy 
2 2

1 2

π

2
E

ma



? (10) 

 

b) Briefly explain why 1 2exp 2
r r

A
a

    
 

is a sensible test function to determine the 

ground state energy of a helium atom using the variational method.    (5) 
 
c) What are the assumptions underpinning the WKB approximation?   (3) 
 
d) In the event that the particle is bound in a potential that is not infinite outside the range 
x = a to x = b where E > V(x), the following relationship applies: 

1
( )

2

b

a
p x dx n    

         (proof not needed). 

Use this to estimate the energies of a harmonic oscillator, i.e. a particle trapped inside a 

potential 2 21
( )

2
V x m x .         (9) 

e) Draw the potential function for alpha particles in the vicinity of an atomic nucleus and 
hence briefly explain why under some circumstances a nucleus may eject an alpha 
particle in what is referred to as alpha decay.       (7) 

 
 

QUESTION 2         [33] 
 

a) Briefly discuss the nature of the wave function of a two-level system that is subject to a 
Hamiltonian with a time-dependent perturbation term.     (4) 
 
b) Consider an electron in the ground state of a hydrogen atom, subjected to an electric 
field potential of the form 

 0( ) expV t eE z t    . 

i) Why would transitions between the ground state to the 2p state (nlm = 210) be far more 
common than transitions between other states?       (4) 
ii) Hence explain (without doing any actual calculations) how you would use the 1-st 
order 2-level system approximation to determine the probability (as a function of time) 
that the electron undergoes a transition to the 2p state.     (6) 
 
c) In a two-level system, the equation relating the populations N of ground state “a” and 
excited state “b” is 

)()( 00  abababb
b BNBNAN

dt

dN
  

where ρ is the radiation field density, and A, Bba and Bab are the Einstein coefficients. 

         /…Q2c (continued) 
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Through comparison with the Planck and Boltzmann laws (both listed under the 
formulas), confirm that 

   Bab = Bba  and  baB
c

A
32

3


 

      (9) 

 

d) Consider a hydrogen-like atom where the wave function takes the form nlm. 

i) Given that   0, zLz , show that 0 nlmmln z  unless mm  .    (6) 

ii) State another selection rule linked to the quantum number l, and explain the implica-
tion of such selection rules for transitions between different states of this atom.  (4) 
 
 

QUESTION 3         [33] 
 

a) Consider a very small particle scattering elastically off a hard sphere of radius R. 
i) Show that the scattering angle equals 
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RbRb

0
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 .     (6) 

ii) Hence determine the differential cross section for this scenario.    (4) 
iii) Finally, confirm that the cross section is R2.      (3) 
 
b) In quantum mechanical scattering theory, the scattered particle’s wave function is 
approximated by: 

exp( )
( , ) exp( ) ( )

ikr
r A ikz f

r
      

 

Briefly explain and justify the terms inside the square bracket.    (6) 
 

c) The integral form of the Schrödinger equation stipulates that the wave function can be 
written as 

 . 

where ψ0 is the solution to the free particle. Show that for the common case that r >> 
r0, the scattering amplitude therefore may be approximated by 

      (9) 

 

d) Consider the expression for the scattering amplitude given by 

. 

Without doing any calculations, explain in each case under what condition the following 
approximations are valid: 

i)   rr 3
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