FACULTY OF SCIENCE

PHYSICS	AUCKLAND PARK KINGSWAY CAMPUS
	PHY8X09
	EXAMINATION
11 JUNE 2021	
8:30-10:30	

PHY8X09

EXAMINER:

EXTERNAL EXAMINER:

TIME: $21 / 2$ HOURS

Prof H Winkler

Prof I Loubser North-West Univ.

MARKS: 100

Please read the following instructions carefully:
ANSWER ALL QUESTIONS: 1-4

$$
\begin{array}{llll}
\text { Constants: } & c=3 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1} & h=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s} & k=1.38 \times 10^{-23} \mathrm{~J} . \mathrm{K}^{-1} \\
& m_{e}=9.31 \times 10^{-31} \mathrm{~kg} & m_{\mathrm{H}}=1.67 \times 10^{-27} \mathrm{~kg} & q_{e}=1.6 \times 10^{-19} \mathrm{C} \\
& G=6.67 \times 10^{-11} \mathrm{N.m}^{2} . \mathrm{kg}^{-2} & 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} & \\
& a=7.56 \times 10^{-16} \mathrm{J.m}^{-3} . \mathrm{K}^{-4} & \sigma=5.67 \times 10^{-8} \mathrm{J.m}^{-2} . \mathrm{K}^{-1} . \mathrm{s}^{-1} \\
& R=1.2 \times 10^{-15} \mathrm{~m} \times A^{1 / 3} & \lambda_{\max } T=0.29 \mathrm{~cm} . \mathrm{K} & \\
& M_{\odot}=2.0 \times 10^{30} \mathrm{~kg} & R_{\odot}=7.0 \times 10^{8} \mathrm{~m} & L_{\odot}=3.83 \times 10^{26} \mathrm{~W} \\
& 1 \mathrm{AU}=1.50 \times 10^{11} \mathrm{~m} & 1 \mathrm{pc}=3.086 \times 10^{16} \mathrm{~m} & \\
& E(2 \mathrm{p}+2 \mathrm{n} \rightarrow 1 \mathrm{He})=26.731 \mathrm{MeV} & &
\end{array}
$$

Formulae:

$P^{2}=\frac{4 \pi^{2}}{G\left(m_{1}+m_{2}\right)} a^{3} \quad m_{1}+m_{2}=\frac{P}{2 \pi G} \frac{\left(v_{1 r}+v_{2 r}\right)^{3}}{\sin ^{3} i} \quad F=\frac{d E}{d A d t} \quad I \propto \frac{1}{D^{2}}$
$I_{\lambda}=\frac{\partial I}{\partial \lambda}=\frac{E_{\lambda} d \lambda}{d A d t \cos \theta d \Omega d \lambda} \quad u_{\lambda}=\frac{4 \pi}{c}\left\langle I_{\lambda}\right\rangle \quad\left\langle I_{\lambda}\right\rangle=\frac{1}{4 \pi} \int_{\text {all angles }} I_{\lambda} d \Omega$
$F_{\lambda} d \lambda=\int_{\text {all angles }} I_{\lambda} d \lambda \cos \theta d \Omega \quad F=\int_{\text {all angles }} I \cos \theta d \Omega \quad p_{\lambda}=\frac{1}{c} \int_{\text {all angles }} I_{\lambda} \cos ^{2} \theta d \Omega$
$B_{\lambda}(T)=\frac{2 h c^{2} / \lambda^{5}}{\exp (h c / \lambda k T)-1} \quad u(T)=\frac{4 \pi}{c} \int_{0}^{\infty} B_{\lambda}(T) d \lambda \quad u(T)=a T^{4} \quad F=\sigma T^{4}$
$P=\frac{1}{3} u \quad P V=N k T \quad d I_{\lambda}=-\kappa \lambda \rho I_{\lambda} d s \quad d \tau_{\lambda}=-\kappa \lambda \rho d s \quad \frac{n_{1}}{n_{2}}=\frac{g_{1}}{g_{2}} \exp \left(\frac{h \nu}{k T}\right)$
$\frac{d I_{\lambda}}{d \tau_{\lambda}}=I_{\lambda}-S_{\lambda} \quad S_{\lambda}=j_{\lambda} / \kappa \lambda \quad \cos \theta \frac{d I_{\lambda}}{d \tau_{\lambda, v}}=I_{\lambda}-S_{\lambda} \quad d=\sqrt{N} \ell$
$\frac{d P}{d r}=-G \frac{M_{r} \rho}{r^{2}}=-\rho g \quad \frac{d M_{r}}{d r}=4 \pi r^{2} \rho \quad U \sim-\frac{3}{5} \frac{G M_{c}^{2}}{R_{c}} \quad P=\frac{\rho k T}{\mu m_{H}}$
$\left.\frac{d T}{d r}\right|_{\text {adiabatic }}=\left(1-\frac{1}{\gamma}\right) \frac{T}{P} \frac{d P}{d r} \quad m_{\lambda}=-2.5 \log _{10}\left(\frac{I_{\lambda}}{I_{\lambda, m=0}}\right) \quad \tau_{\lambda}=0.921 A_{\lambda}$
$v_{s}=\sqrt{\frac{\gamma P}{\rho}} \quad \Pi \approx \sqrt{\frac{3 \pi}{2 \gamma G \rho}} \quad E_{F}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3} \quad E=\frac{3}{2} k T$
$P_{\text {min }}=2 \pi \sqrt{\frac{R^{3}}{G M}} \quad R_{S}=\frac{2 G M}{c^{2}} \quad v_{e s c}=\sqrt{\frac{2 G M}{R}}$

Potentially useful mathematical identities:

$$
\begin{array}{ll}
\int_{-\infty}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=2 \pi & a^{2}=b^{2}+c^{2}-2 b c \cos \theta \quad \int_{0}^{\infty} \frac{d x}{x^{5}(\exp (1 / x)-1)}=\frac{\pi^{4}}{15} \\
V_{\text {sphere }}=\frac{4}{3} \pi r^{3} & A_{\text {sphere }}=4 \pi r^{2} \quad\left\langle\sin ^{2} x\right\rangle=\frac{1}{2} \quad e^{x}=1+x+\frac{1}{2} x^{2}+\ldots
\end{array}
$$

QUESTION 1

a) A particular star with a mass 0.140 times the mass of the Sun and known to be 1.75 pc away is seen to oscillate about its mean position with an amplitude of 0.025 arcseconds with a period of 26 years. The oscillation is believed to be caused by a planet in a nearcircular orbit around this star. Determine the distance from the planet to the star and the planet's mass. [Hint: use as an approximation the fact that the mass of the star is much larger than the mass of the planet]
b) Show that for small wavelengths Planck's Law simplifies to Wien's Law

$$
\begin{equation*}
B_{\lambda} \simeq \frac{2 h c^{2}}{\lambda^{5}} \exp \left(-\frac{h c}{\lambda k T}\right) \tag{4}
\end{equation*}
$$

Furthermore confirm that this means that $B_{\lambda} \rightarrow 0$ as $\lambda \rightarrow 0$.
c) Define the specific energy density, and confirm that this is equal to $u_{\lambda}=\frac{4 \pi}{c}\left\langle I_{\lambda}\right\rangle$.
d) A photon is moving from its origin in a uniform medium, scattering at random in a random direction. If in time t it moves an average distance d from the origin, how long will it take, on average, to reach a distance $2 d$ from the origin?
e) Given the radiative transfer equation form $\cos \theta \frac{d I_{\lambda}}{d \tau_{\lambda, v}}=I_{\lambda}-S_{\lambda}$, show that, for a grey atmosphere, $\cos \theta \frac{d I}{d \tau_{v}}=I-S$, and hence that $\frac{d F_{r a d}}{d \tau_{v}}=4 \pi(\langle I\rangle-S)$.
[I and S are defined by $I=\int_{0}^{\infty} I_{\lambda} d \lambda$ and $S=\int_{0}^{\infty} S_{\lambda} d \lambda$].

QUESTION 2

a) A star has a density whose dependence on the distance r to the centre of the star is given by

$$
\rho(r)=\rho_{0}\left(1-\frac{r^{2}}{R^{2}}\right)
$$

where ρ_{0} is the density at the star's centre, and R is the outer stellar radius.
Determine an expression for the mass inside a distance r from the star's centre in terms of ρ_{0} and R. Hence obtain the expression for the total mass M of the star.
b) You wish to test a (wrong) theory that the energy of stars solely comes from the gravitational energy released while the interstellar cloud condenses.
Show that the total gravitational energy released due to this process for a star of mass M, radius R and uniform density would be given by

$$
\begin{equation*}
E \sim-\frac{3}{10} \frac{G M^{2}}{R} . \tag{9}
\end{equation*}
$$

c) Show that the criterion for convection $\left|\frac{d T}{d r}\right|_{\text {actual }}>\left|\frac{d T}{d r}\right|_{\text {adiabatic }}\left[=\left(1-\frac{1}{\gamma}\right) \frac{T}{P} \frac{d P}{d r}\right]$ may equally be expressed as $\quad \frac{d \ln P}{d \ln T}<\frac{\gamma}{\gamma-1}$

QUESTION 3

a) Comparing two stars, one with $B-V>0$ and one with $B-V<0$, which is the redder of the two, and why?
b) We know that the radial speed of particles at the outer edge of a gravitationally collapsing interstellar cloud of initial radius r_{0} and density ρ_{0} is given by the expression

$$
\frac{d r}{d t}=-\left[\frac{8 \pi}{3} G \rho_{0} r_{0}^{2}\left(\frac{r_{0}}{r}-1\right)\right]^{1 / 2}
$$

Describe the procedure and assumptions you would use to determine the time required to collapse the cloud to a star. NB: do not do any calculations.
c) What is the Hertzsprung-Russel (HR) diagram? Hence briefly discuss the evolution of stars with reference to this diagram.
d) Given that, assuming near-constant density, the pressure as a function of distance from a star's centre is given by $P(r)=\frac{2}{3} \pi G \rho^{2}\left(R^{2}-r^{2}\right)$, and that the speed of sound in a gas with adiabatic ratio γ is $v_{s}=\sqrt{\frac{\gamma P}{\rho}}$, confirm that the period of oscillation for a pulsating star is approximately $\quad \Pi \approx \sqrt{\frac{3 \pi}{2 \gamma G \rho}}$.

QUESTION 4

a) Given the relation $\frac{d P}{d r}=-G \frac{M_{r} \rho}{r^{2}}$, the stellar boundary condition $P=0$ when $r=R$ and assuming constant density,
i) Show that $P(r)=\frac{2}{3} \pi G \rho^{2}\left(R^{2}-r^{2}\right)$
ii) The pressure and temperature at the centre of a white dwarf of radius $R=6.37 \times 10^{6} \mathrm{~m}$, constant density $\rho=1.84 \times 10^{9} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ and a carbon $(\mu=12.000)$ core.
b) One way to imagine a neutron star is as a huge atomic nucleus with $\sim 10^{57}$ nucleons. What would be its radius under this simplistic model?
c) Show that the minimum rotational period of a pulsar is $P_{\min }=2 \pi \sqrt{\frac{R^{3}}{G M}}$.
d) In no more than two sentences each, describe the following terms:
i) The Schwarzschild radius
ii) An interacting binary
iii) An accretion disk
iv) A supernova

