
FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

MODULE IT18X97/IT00197
PARALLEL PROGRAMMING

CAMPUS AUCKLAND PARK CAMPUS (APK)

EXAM EXAMINATION SSA OCTOBER 2021 MEMO

DATE: 28 October 2021 SESSION: 08:30 - 10:30

ASSESSOR(S): MR R. MALULEKA

EXTERNAL MODERATOR: DR A. EZUGWU (UKZN)

DURATION: 120 MINUTES MARKS: 100

Please read the following instructions carefully:

1. An additional 30 minutes submission time will be allowed.

2. Answer all questions.

3. Answer each question in its entirety before moving on to the next.

4. Submit your answers in a single PDF document.

5. This paper consists of 8 pages, excluding the cover page.

Parallel Programming Examination SSA October 2021 28 October 2021

QUESTION 1
Suppose you have joined Habitat for Humanity as a volunteer to help build
house for families in need. You and the other volunteers will be separated
into teams, which will be assigned to different tasks.

(a) [2]Identify at least four (4) tasks involved in the construction of a house.

Solution:
2 marks for identifying realistic tasks

√√

(b) [2]Which tasks from (a) exhibit task parallelism?

Solution:
2 marks for identifying task-parallelism, i.e. tasks that can be done
simultaneously, e.g. installing plumbing piping and electrical cabling.√√

(c) [2]Which tasks from (a) exhibit data-dependency?

Solution:
2 marks for identifying dependent tasks, e.g. pouring the foundation
and putting up walls.

√√

(d) [2]Once construction is finished, the house will need to be painted. How
can we use data-parallelism to partition the work of paining the house?

Solution:
Assign different workers to paint different parts of the house at the
same time.

√√

(e) [3]What are the three sources of overhead in parallel programs?

Solution:
Inter-process Interaction, Idling, Excess Computations

√√√

(f) [6]How could the sources of overhead identified in (e) present themselves
in the construction of a house?

Solution:

• Inter-process Interaction: teams needing to communicate/share
ideas/share items to achieve tasks.

√√

• Idling: a team needing to wait for another team before it can
start working, e.g. those installing windows having to wait for
those putting up the walls.

√√

Page 1 of 8

Parallel Programming Examination SSA October 2021 28 October 2021

• Excess Computations: any additional work involved in forming/-
managing teams and assigning them tasks, e.g. separating vo-
lunteers into groups.

√√

(g) [3]Give the following metrics for ring network topology (aka linear array
with wraparound link) with n nodes:

i. diameter
ii. bisection width
iii. number of links

Solution:

i. floor(n/2), n/2 also acceptable
√

ii. 2
√

iii. n
√

Total: 20

QUESTION 2

(a) [9]You have been hired by a company to acquire a multi-processor ma-
chine for their resource intensive application. You determine that 90%
of the tasks in the application can run in parallel, and that the work
can be uniformly divided. You also determine that application is able
to handle an increasing amount of work as more cores are added.
You can purchase a 4, 8, or 16 core machine. Which machine would
give you the best value for money? Motivate your answer.

Solution:
Since the problem size can grow as additional cores are added we
should use Gustafson-Barsis’s law to calculate the scaled speedup.
We use the scaled speedup to determine the efficiency as a meas-
ure of where we are getting the most benefit. Scaled Speedup is
given by: ψ ≤ np+ (1− np)s.
Efficiency is given by: ϵ = ψ/np

• 2 marks per calculation for each value of np. [6]

• 3 marks for choice with valid reasoning. [3]

(b) [8]If an application running on a single processor has a fixed size problem,
and spends 10% of its runtime on serial work and 90% on parallelizable
work, what speedups can you expect to see on:

(i) 6 processors?
(ii) an unlimited amount of processors?

Page 2 of 8

Parallel Programming Examination SSA October 2021 28 October 2021

Solution:
Since the problem size is fixed we use Amdalh’s law:

S ≤ 1

s+ (1−s)
np

• 4 marks for calculation on 6 processors (2 marks for correct
function choice, 2 marks for correct calculation)

• Calculate speedup as p tends to infinity [4 marks]

(c) [3]Suppose that MPI COMM WORLD consists of the three processes 0, 1
and 2, and suppose the following code is executed:
int x, y, z;
switch(my_rank) {
case 0:

x=1; y=2; z=3;
MPI_Bcast(&x, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Send(&y, 1, MPI_INT, 2, 12, MPI_COMM_WORLD);
MPI_Bcast(&z, 1, MPI_INT, 1, MPI_COMM_WORLD);
break;

case 1:
x=4; y=5; z=6;
MPI_Bcast(&x, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&y, 1, MPI_INT, 1, MPI_COMM_WORLD);
break;

case 2:
x=7; y=8; z=9;
MPI_Bcast(&z, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Recv(&x, 1, MPI_INT, 0, 12, MPI_COMM_WORLD, &status);
MPI_Bcast(&y, 1, MPI_INT, 1, MPI_COMM_WORLD);
break;

}

What are the values of x, y, and z on each process after the code has
been executed?

Solution:
x y z

p0 1 2 5
p1 1 5 6
p2 2 5 1

Total: 20

Page 3 of 8

Parallel Programming Examination SSA October 2021 28 October 2021

QUESTION 3
Given the following task graph for a program running on a multiprocessor
machine.

100ms

30ms20ms 30ms

10ms

40ms40ms 40ms

50ms

(a) [2]Assuming a single (1) worker thread what is the runtime of this pro-
gram?

Solution:
Add all work: 360

√√

(b) [4]What is the speedup when two (2) threads are used?

Solution:
Serial Sections: 160ms
Parallel Section P1:::3 : 50ms

Parallel Section P5:::7 : 80ms

Total: 290ms
Speedup = sequential execution time/parallel execution time
Speedup = 360/290 = 1.241

√√√√

(c) [1]What is the maximum degree of concurrency of the graph?

Solution:
3
√

(d) [3]What is the average degree of concurrency of the graph?

Solution:
avg. concurrency = total work / length of critical path
= 360/230 = 1.5652

√√√

Page 4 of 8

Parallel Programming Examination SSA October 2021 28 October 2021

(e) [5]Show an efficient mapping of the tasks onto 3 processes.

Solution:

100ms P0

30ms

P1

20ms

P0

30ms

P2

10ms P0

40ms

P1

40ms

P0

40ms

P2

50ms P0

(f) [4]Discuss what data dependency is, how it may hinder parallelism, and
how it can be resolved.

Solution:

• Defn: The results of an instruction may be required for subsequent
instructions.

√

• Hinders parallelism as subsequent instructions cannot be ex-
ecuted until the after initial one.

√

• Solution: Instructions may be reordered to execute independ-
ent instructions simultaneously.

√

May be done automatically at runtime if hardware supports
this, or explicitly by the programmer.

√

(g) [6]The number of tasks into which a problem is decomposed determines
its granularity. Discuss granularity of task decompositions, as well its
effect on the performance of parallel programs. Use the example of
dense matrix-vector multiplication to support your discussion.

Solution:
max 6

• Decomposition into a large number of tasks results in fine-grained
decomposition; [1]

• and that into a small number of tasks results in a coarse grained
decomposition. [1]

Page 5 of 8

Parallel Programming Examination SSA October 2021 28 October 2021

• Often, using fewer processors improves performance of parallel
systems. [1]

• Using fewer than the maximum possible number of processing
elements to execute a parallel algorithm is called scaling down
a parallel system. [1]

• A naive way of scaling down is to think of each processor in the
original case as a virtual processor and to assign virtual pro-
cessors equally to scaled down processors. [1]

• Since the number of processing elements decreases by a factor
of n/p ,the computation at each processing element increases
by a factor of n/p. [1]

• The communication cost should not increase by this factor since
some of the virtual processors assigned to a physical processors
might talk to each other. This is the basic reason for the improve-
ment from building. [1]

• Use of dense matrix-vector multiplication example [3]

Total: 25

QUESTION 4
Rather than simply finding the sum of n values,

x0 + x1 + . . .+ xn−1,

prefix sums are the n partial sums

x0, x0 + x1, . . . , x0 + x1 + . . .+ xn−1

(a) [4]Devise a serial algorithm for computing the n prefix sums of an array
with n elements.

Solution:

1 prefix_sums[0] = x[0] [1 mark]
2 for i in range(1,len(x)): [1 mark]
3 prefix_sums[i] = prefix_sums[i-1] + x[i] [2 marks]

Page 6 of 8

Parallel Programming Examination SSA October 2021 28 October 2021

(b) [9]Parallelize your serial algorithm for a system with n processes, each of
which stores one of the xis. Use only point-to-point communication.
Assume that the array is referenced by a variable x at process zero and
begin by having p0 send the other processing their respective values.
Each process should store its respective xi in a variable x i, and end
by storing its corresponding prefix sum in a variable prefix x i. I.e.

1 from mpi4py import MPI
2

3 comm = MPI .COMMWORLD
4 s i z e = comm. Get s ize ()
5 rank = comm. Getrank ()
6

7 x i = . . .
8 .
9 .

10 .
11 sys . stdout . wr i te (”Process %d calculated p r e f i x x i = %d.\n” %

(rank , p r e f i x x i))

Solution:

1 from mpi4py import MPI
2

3 comm = MPI .COMMWORLD
4 s i z e = comm. Get s ize ()
5 rank = comm. Getrank ()
6

7 # array x already at p 0
8

9 i f rank = 0:
10 x i = x [0]
11 f o r i i n range(1 , s i z e) :
12 comm. Send(x [i] , dest = i) [1 mark]
13 else :
14 comm. Recv(x i , source = 0) [1 mark]
15

16 i f rank != 0 : [1 mark]
17 comm. Recv(preceding sum , source = rank −1) [2 marks]
18 p r e f i x x i = preceding sum + x i [1 marks]
19

20 i f rank s i ze −1: [1 mark]
21 comm. Send(p r e f i x x i , dest = rank+1) [2 marks]
22

23 sys . stdout . wr i te (”Process %d calculated p r e f i x x i = %d.\n” %
(rank , p r e f i x x i))

(c) [12]Suppose that we are working with a communicator of size 4 and that
X is a 4× 4 matrix.

x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

Page 7 of 8

Parallel Programming Examination SSA October 2021 28 October 2021

(i) How would the components of x be distributed among the pro-
cesses in a program that used a block distribution?

(ii) How would the components of x be distributed among the pro-
cesses in a program that used a cyclic distribution?

(iii) How would the components of x be distributed among the pro-
cesses in a program that used a block-cyclic distribution with block-
size b = 2× 2?

Solution:

(i) Process 0 : x0, x1, x2, x3
√

Process 1 : x4, x5, x6, x7
√

Process 2 : x8, x9, x10, x11
√

Process 3 : x12, x13, x14, x15
√

(ii) Process 0 : x0, x4, x8, x12
√

Process 1 : x1, x5, x9, x13
√

Process 2 : x2, x6, x10, x14
√

Process 3 : x3, x7, x11, x15
√

(iii) Process 0 : x0, x1, x4, x5
√

Process 1 : x2, x3, x6, x7
√

Process 2 : x8, x9, x12, x13
√

Process 3 : x10, x11, x14, x15
√

Total: 25

QUESTION 5

(a) [10]Briefly reflect on your experiences working on a research project for this
module, drawing on the theory you have learnt. Include the following
in your discussion:

• A brief background of your research topic;
• The results of your research;
• The parallel algorithm design model you used.

Solution:

• content [6]

• drawing on theory from module [2]

• structure [2]

Total: 10

— End of paper —

Page 8 of 8

