

PROGRAM : BACHELOR OF ENGINEERING TECHNOLOGY (BEngTech)

: ELECTRICAL.

SUBJECT : WAVE AND SIGNAL TECHNOLOGY 3A

CODE : WSTELA3

<u>DATE & TIME</u> : JUNE, 7TH 8:30am (MAIN EXAM) - 2019

DURATION : 3 hours

WEIGHT : 60: 100

TOTAL MARKS : 70

FULL MARKS : 100%

EXAMINER : Dr. KA Ogudo

MODERATOR : Dr. Patrice Umenne

NUMBER OF PAGES : 3 PAGES

INSTRUCTIONS : ANSWER ALL QUESTIONS NEATLY.

: ONE NON-PROGRAMMABLE CALCULATOR PER

CANDIDATE.

REQUIREMENTS: AT MOST: TWO ANSWER SHEETS PER CANDIDATE.

WSTELA3 Wave and Signal technology 3A-JUNE 7th Main-Exams-Memo-2019 QUESTION 1	[8]
With the aid of a sketch block diagram model a typical communication systems with the corresponding components of the communication systems	(8)
QUESTION 2	[8]
Determine the power and the root mean square (rms) value for each of the following sign	ıals
(a) $10\cos\left(100t + \frac{p}{3}\right)$	(4)
(b) $10\sin(5t)\cos(10t)$	(4)
QUESTION 3	[12]
Five telemetry signals, each of bandwidth 1 kHz, are to be transmitted simultaneously binary PCM. The maximum tolerable error in sample amplitudes is 0.2% of the peak samplitude. The signals must be sampled at least 20% above the Nyquist rate. Framing synchronizing requires an additional 0.5% extra bits. Determine the minimum possible rate (bits per second) that must be transmitted, and the minimum bandwidth require transmit this signal.	ignal g and data
QUESTION 4	[10]
A wire dipole antenna has length of 27 ft. (a) What is its frequency of operation? (b) What is its approximate bandwidth, using a 4% bandwidth (Bw) variation (c) The power applied to an antenna with a gain of 4 dB is 5 W. What is the ERP?	(3) (3) (4)
QUESTION 5	[10]
 (a) What is the length of a folded dipole made with a 300Ω twin lead for a frequency of MHz (b) Calculate the length of a one-quarter wavelength vertical antenna at 450 MHz (c) Calculate the length of the coaxial loop used in a coaxial balun for a frequency of MHz. Assume a velocity factor of 0.8. (d) What is the path attenuation between transmitter and receiver at a frequency of 1.2 and a distance of 11000 miles? (e) A cell phone antenna tower 240 ft high uses spatial diversity. What is the minimal desirable antenna separation? 	(2) (2) f 227 (2) GHz (2)
QUESTION 6	[8]

In a certain telemetry system, there are eight analog measurement, each of bandwidth 2 kHz. Samples of these signals are time-division multiplexed, quantized, and binary coded. The error in sample amplitude cannot be greater than 1% of the peak amplitude.

WSTELA3 Wave and Signal technology 3A-JUNE 7th Main-Exams-Memo-2019 (a) Determine L, the number of quantization levels. (b) Find the transmission bandwidth B _T if Nyquist criterion pulse with roll-off fac	(4)
are used. The sampling rate must be at least 25% above the Nyquist rate.	(4)
QUESTION 7	[14]
Name and explain the three (3) basic paths that a radio signal can take through space	(14)
Total mar Full Mark	