PROGRAM	: BACHELOR OF ENGINEERING TECHNOLOGY [BEng Tech] IN ELECTRICAL ENGINEERING. B6ELEQ
$\underline{\text { MODULE }}$	$:$ POWER TECHNOLOGY 3B
$\underline{\text { CODE }}$	$:$ POWELB3
$\underline{\text { DATE }}$	$:$ SUMMER SUPPLEMENTARY EXAMINATION
$\underline{\text { DURATION }}$	$: 3$ HOURS
$\underline{\text { CALCULATION }}$	$: 40$ [SEMESTER]: 60 [EXAM]
$\underline{\text { CRITERIA }}$	$: 7$
$\underline{\text { NQF }}$	
$\underline{\text { TOTAL MARKS }}$	$: 100$

EXAMINER	$:$
MODERATOR W. DOORSAMY	
NUMBER OF PAGES	$:$

INSTRUCTIONS	$:$ QUESTION PAPERS MUST BE HANDED IN.
REQUIREMENTS	$:$ POCKET CALCULATORS ARE PERMITTED.

INSTRUCTIONS TO CANDIDATES:

1. 100 MARKS $=100 \%$.
2. ATTEMPT ALL QUESTIONS.
3. ANSWER QUESTIONS CONSIDERING THE MARK ALLOCATION.
4. QUESTIONS MAY NOT BE ANSWERED IN ANY ORDER AND ALL PARTS OF A QUESTION MUST BE KEPT TOGETHER.
5. ALL DIAGRAMS AND SKETCHES MUST BE DRAWN NEATLY AND LABELED CLEARLY.
6. ALL WORK DONE IN PENCIL EXCEPT DIAGRAMS AND SKETCHES WILL BE CONSIDERED AS ROUGH WORK.
7. MARKS WILL BE DEDUCTED FOR WORK WHICH IS POORLY PRESENTED.
8. ANSWER ALL THE QUESTIONS.

QUESTION 1

1.1 Answer true or false. When the answer is false, justify your answer by giving a brief explanation or a mathematical proof.
1.1.1 At turn on, diode current reverses for reverse recovery time (t_{rr}) which is required to sweep excess carriers and block positive polarity voltage.
1.1.2 Fast recovery diodes are useful for application in high-frequency circuits because they are designed with a small reverse recovery time (t_{rr}).
1.1.3 Switching a MOSFET requires continuous application of gate-source voltage.
1.1.4 IGBTs can be designed to block negative voltages.
1.1.5 The reverse voltage across a thyristor should be removed during turn-off time interval t_{q} to avoid risk of premature turn-on.

QUESTION 2

1.2 According to the datasheet of a switching device, switching corresponds to linearised characteristics shown in figure 1a for clamped-inductive switching:

$$
\mathrm{t}_{\mathrm{ri}}=100 \mathrm{~ns} ; \quad \mathrm{t}_{\mathrm{fv}}=50 \mathrm{~ns} ; \quad \mathrm{t}_{\mathrm{rv}}=100 \mathrm{~ns} ; \quad \mathrm{t}_{\mathrm{fi}}=200 \mathrm{~ns} ;
$$

Solve for and plot the switching power loss as a function of frequency in a range of 25-100 kHz , assuming $\mathrm{V}_{\mathrm{d}}=300 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{O}}=4 \mathrm{~A}$ in figure 1 b .

FIGURE 1a

FIGURE 1b

QUESTION 3

The repetitive input voltage waveform given in figure 2 is filtered and then applied across the load resistance. Consider it to be in steady state. Given that $\mathrm{L}=100 \mu \mathrm{H}$ and $\mathrm{P}_{\text {Load }}=250 \mathrm{~W}$:
3.1 Solve for the average voltage output V_{O}.
3.2 Assuming $\mathrm{C} \rightarrow \infty$ so that $\mathrm{vo}(\mathrm{t}) \approx \mathrm{V}_{\mathrm{O}}$, determine the rms value of the the load current.
3.3 Illustrate the waveforms of V_{L} and I_{L}.

FIGURE 2

QUESTION 4

4.1 Derive the efficiency of a single-phase half-wave rectifier.
4.2 Solve for the average current supplied to a 200Ω load when it supplied by using a single phase bridge rectifier and single-phase alternating supply voltage of 220 V rms.
4.3 A 3-phase full-wave diode rectifier is required to feed a 100Ω resistive load from a 3-phase 220 V (line, rms), 50 Hz delta connected supply. Determine the load current (rms).
\qquad

QUESTION 5

Derive the state equations for the buck converter from first principles, using the state-space averaging technique.

Express your final formulation in canonical form.

QUESTION 6

6.1 Explain with the aid of a simple graph the concept of PWM voltage control through varying the amplitude modulation ratio.
6.2 Figure 3 gives a single-phase full bridge inverter, operating in a square-wave mode. The dc-voltage is 444 V and the output voltage frequency supplying the motor is 57 Hz . Inductance $\mathrm{L}=200 \mathrm{mH}$. Solve for the peak value of the ripple current in the output.

FIGURE 3

QUESTION 7

7.1 A 10Ω resistor with a suitable power rating is mounted on a heat sink and connected to a 20 V dc-power supply. The ambient temperature is $25^{\circ} \mathrm{C}$ and after one hour the temperature of the heat sink is $55^{\circ} \mathrm{C}$. Calculate the thermal resistance of the heat sink.
7.2 With the aid of a neat and clearly labelled circuit illustration, give a detailed discussion of an inrush-current protection scheme.

