

PROGRAM : BACHELOR OF ENGINEERING TECHNOLOGY [BEng Tech] IN ELECTRICAL ENGINEERING. B6ELEQ

MODULE : POWER TECHNOLOGY 3B

- <u>CODE</u> : POWELB3
- <u>DATE</u> : SUMMER SUPPLEMENTARY EXAMINATION NOVEMBER 2019
- **DURATION** : 3 HOURS
- <u>CALCULATION</u> : 40 [SEMESTER]: 60 [EXAM] <u>CRITERIA</u>
- <u>NQF</u> : 7
- TOTAL MARKS :100
- **EXAMINER** : DR W. DOORSAMY
- MODERATOR : DR L. MASISI
- NUMBER OF PAGES : 5 PAGES

<u>INSTRUCTIONS</u> : QUESTION PAPERS MUST BE HANDED IN.

<u>REQUIREMENTS</u> : POCKET CALCULATORS ARE PERMITTED.

INSTRUCTIONS TO CANDIDATES:

- 1. 100 MARKS = 100%.
- 2. ATTEMPT ALL QUESTIONS.
- 3. ANSWER QUESTIONS CONSIDERING THE MARK ALLOCATION.
- 4. QUESTIONS MAY NOT BE ANSWERED IN ANY ORDER AND ALL PARTS OF A QUESTION MUST BE KEPT TOGETHER.
- 5. ALL DIAGRAMS AND SKETCHES MUST BE DRAWN NEATLY AND LABELED CLEARLY.
- 6. ALL WORK DONE IN PENCIL EXCEPT DIAGRAMS AND SKETCHES WILL BE CONSIDERED AS ROUGH WORK.
- 7. **MARKS WILL BE DEDUCTED** FOR WORK WHICH IS POORLY PRESENTED.
- 8. ANSWER ALL THE QUESTIONS.

QUESTION 1

1.1 Answer true or false. When the answer is false, justify your answer by giving a brief explanation or a mathematical proof.

1.1.1	1 At turn on, diode current reverses for reverse recovery time (t_{rr}) which is required to		
sweep	excess carriers and block positive polarity voltage.	(2)	
1.1.2	Fast recovery diodes are useful for application in high-frequency circuits because they		
	are designed with a small reverse recovery time (t_{rr}) .	(2)	
1.1.3	Switching a MOSFET requires continuous application of gate-source voltage.	(2)	

- 1.1.4 IGBTs can be designed to block negative voltages. (2)
- 1.1.5 The reverse voltage across a thyristor should be removed during turn-off time interval t_q to avoid risk of premature turn-on. (2)
 - [<u>10</u>]

QUESTION 2

1.2 According to the datasheet of a switching device, switching corresponds to linearised characteristics shown in figure 1a for clamped-inductive switching:

 $t_{ri} = 100 \text{ ns}; \quad t_{fv} = 50 \text{ ns}; \quad t_{rv} = 100 \text{ ns}; \quad t_{fi} = 200 \text{ ns};$

Solve for and plot the switching power loss as a function of frequency in a range of 25-100 kHz, assuming $V_d = 300$ V and $I_o = 4$ A in figure 1b.

[<u>10</u>]

(8)

QUESTION 3

The repetitive input voltage waveform given in figure 2 is filtered and then applied across the load resistance. Consider it to be in steady state. Given that $L = 100 \mu H$ and $P_{Load} = 250 W$:

3.1 Solve for the average voltage output V_0 . (2)

3.2 Assuming $C \rightarrow \infty$ so that $v_0(t) \approx V_0$, determine the rms value of the load current. (5)

3.3 Illustrate the waveforms of V_L and I_L .

[<u>15</u>]

QUESTION 4

4.1 Derive the efficiency of a single-phase half-wave rectifier.	(5)		
4.2 Solve for the average current supplied to a 200 Ω load when it supplied by using a single			
phase bridge rectifier and single-phase alternating supply voltage of 220 V rms.	(3)		
4.3 A 3-phase full-wave diode rectifier is required to feed a 100 Ω resistive load from a 3-phase			
220 V (line, rms), 50Hz delta connected supply. Determine the load current (rms).	(7)		
	[15]		

QUESTION 5

Derive the state equations for the buck converter from first principles, using the state-space averaging technique.

Express your final formulation in canonical form.

[<u>20</u>]

QUESTION 6

6.1 Explain with the aid of a simple graph the concept of PWM voltage control through varying the amplitude modulation ratio. (5)

6.2 Figure 3 gives a single-phase full bridge inverter, operating in a square-wave mode. The dc-voltage is 444V and the output voltage frequency supplying the motor is 57 Hz. Inductance L = 200 mH. Solve for the peak value of the ripple current in the output. (10)

QUESTION 7

7.1 A 10 Ω resistor with a suitable power rating is mounted on a heat sink and connected to a 20V dc-power supply. The ambient temperature is 25°C and after one hour the temperature of the heat sink is 55°C. Calculate the thermal resistance of the heat sink. (5)

7.2 With the aid of a neat and clearly labelled circuit illustration, give a detailed discussion of an inrush-current protection scheme. (10)

[<u>15</u>]

[15]

TOTAL: 100