

FACULTY OF SCIENCE

ACADEMY OF	COMPUTER SCIENCE AND SOFTWARE ENGINEERING
MODULE	CSC2B10 COMPUTER SCIENCE 2B
CAMPUS	AUCKLAND PARK CAMPUS (APK)
	SSA EXAM MEMO
DATE: 02-12-2021	SESSION: 08:00 - 10:00
ASSESSOR(S):	MR. T MOODLEY MS. M FOURIE
MODERATOR:	DR. J.L. DU TOIT

MARKS: 100

 $\label{eq:Please read} Please \ read \ the \ following \ instructions \ carefully:$

- 1. Downloading and Reading time: $08{:}00$ $08{:}10$
- 2. Writing time: 08:10 10:10

DURATION: 120 MINUTES

- 3. Upload time: 10:10 10:40 (No extra time will be awarded)
- 4. Test support is available on Discord: Please see the email sent to you
- 5. Answers may be typed or hand-written and photographed.
- 6. Where possible, provide answers in the form of a list.

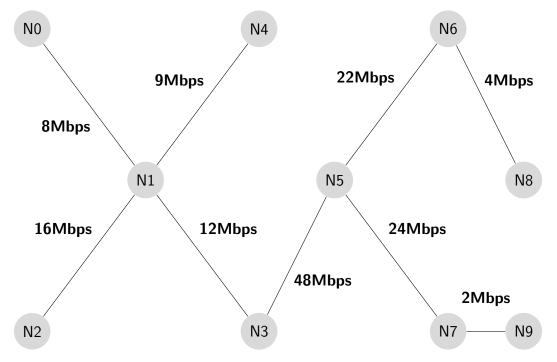
- 7. Where possible, upload your submission as a single PDF document.
- 8. Please DO NOT compress (ZIP, RAR, etc.) your submission.
- 9. Write *cleanly* and *legibly*.
- 10. You may use a non-programmable calculator to answer the questions.
- 11. This paper consists of 11 pages.
- 12. Upload all of your answers before the close of the submission time at 10:40

QUESTION 1

(a) According to the table below, provide an appropriate description for each property [3] under the appropriate column. (1 mark for each description) Write down the letter and the correct answer next to it. e.g. (f) Foo

Type of network	Hybrid Fibre Coaxial Cable Network	Satellite
Directionality of Medium	Guided	Unguided
Material of Medium	Coaxial Cable and Fiber	Radio Waves
	Optics	
Transmission speed	10s of Mbps	kbps to 45Mbps

(b) The internet consists of various layers and service models, why should we layer within [02] the internet?


Solution:

- dealing with complex systems: - explicit structure allows identification, relationship of complex system's pieces - layered reference model for discussion - modularization eases maintenance, updating of system - change of implementation of layer's service transparent to rest of system

Total: 5

QUESTION 2

Assume there is a copper network with 8 nodes (N0, N1, N2, N3, N4, N5, N6 and N7) and the transmission rates between these nodes are as follows:

It is also determined that the distances between the nodes are as follows: (Note that all working out must be shown, failure to do this may result in the student receiving zero for the question)

N0-N1: 20km

N1-N4: 8mN3-N5: 6km

N1-N2: 24km
N3-N5: 6km
N6-N8: 30km
N1-N3: 4km
N5-N6: 28km
N7-N9: 12km

Answer the following questions:

(a) *Determine* the **approximate transmission rate** when communicating between N0 [1] and N8.

N5-N7: 32km

Solution:

It will be at 4 Mbps.

(b) Taking this **approximate transmission rate** into account, how *long* (in seconds) [02] will it take to transfer a 40 MegaByte **file** from node N0 to N8?

Solution:

36*8 = 320 Megabits (1 mark) 320 / 4 = 80 seconds (1 mark) (no if they use their own throughput)

(c) If it is determined that the copper installed in this network propagates a signal at a speed of 50 000 km/s. *Calculate* the propagation delay for communications between N0 to N8.

```
Solution:
```

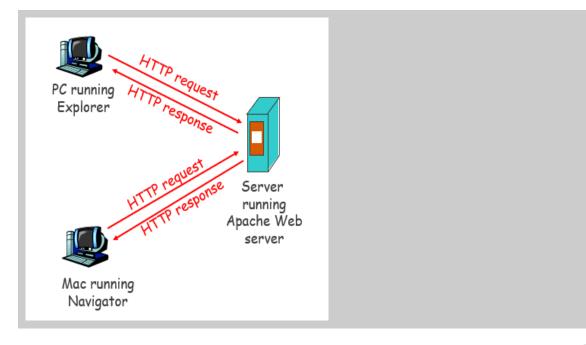
20 + 4 + 6 + 28 + 30 = 88 km (1 marks) 88 / 50 000 = 0.00176 seconds (2 marks)

(d) Assuming that there is no nodal processing delay or queueing delay, *calculate* the [04] **total time** taken to transfer a 40 MegaByte file from from N0 to N8?

Solution:

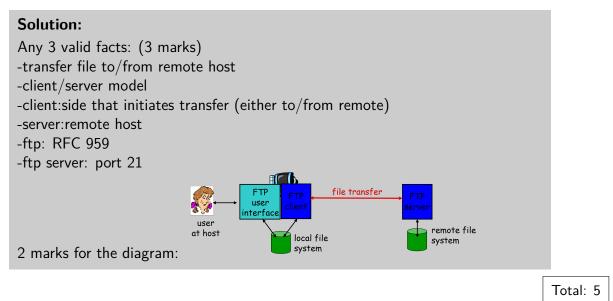
Transmission delay = 320/8 + 320/12 + 320/48 + 320/22 + 320/4 = 40 + 26.67 + 6.67 + 14.54 + 80 = 167.88 seconds (2 marks) Total = 167.88 + 0.00176 = 167.88176 seconds (2 marks) (1 mark if use their own values)

Total: 10


QUESTION 3

Using a diagram discuss how the HTTP protocol works. Be sure to label and refer back to your diagram in your answer.

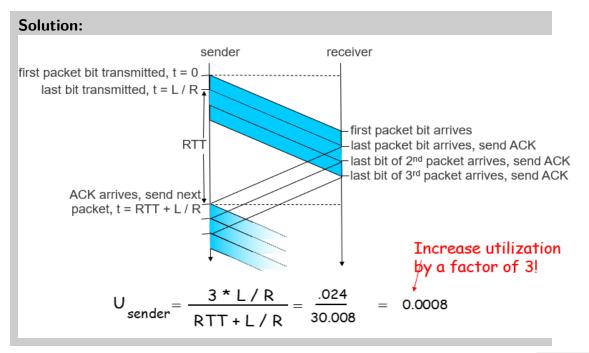
Solution:


HTTP: hypertext transfer protocol Web's application layer protocol client/server model client: browser that requests, receives, "displays" Web objects server: Web server sends objects in response to requests

Total: 5

QUESTION 4

(a) *Discuss* the FTP protocol **and** draw a diagram to support your answer. [05]



QUESTION 5

(a) RDT 2.0 has a fatal flaw, *discuss* this flaw and how we can mitigate this fatal flaw. [04]

Solution: What happens if ACK/NAK corrupted? sender doesn't know what happened at receiver! can't just retransmit: possible duplicate Handling duplicates: sender retransmits current pkt if ACK/NAK garbled sender adds sequence number to each pkt receiver discards (doesn't deliver

(b) Using a diagram *discuss* the performance improvement that RDT 3.0 *stop and wait* [06] operation yields.

Total: 10

QUESTION 6

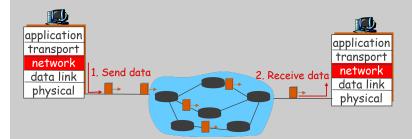
The table below represents the payload of a UDP segment. Calculate the **sum** of the following three 16-bit integers, along with their associated 1s complement **checksum**. *Note that all working out must be shown, failure to do this may result in the student receiving zero for the question*

Number 1	0	0	0	1	0	1	0	1	0	1	1	0	1	0	1	1
Number 2	1	0	1	0	1	0	0	0	1	1	1	0	1	0	0	1
Number 3	0	0	1	0	0	0	0	0	1	1	1	0	1	0	0	1
Sum (1 wrap)	1	1	0	1	1	1	1	0	0	0	1	1	1	1	0	1
Wrap around	1	1	0	1	1	1	1	0	0	0	1	1	1	1	0	1
Checksum	0	0	1	0	0	0	0	1	1	1	0	0	0	0	1	0

Solution:

0010 0001 1100 0010

Total: 5


QUESTION 7

(a) In the network layer, we have what is called virtual circuits and datagram networks. [08]
 Fully discuss datagram networks and how they work. *Draw* a diagram to support your answer.

Solution:

(Any valid 6 facts = 6 marks description, 2 marks for diagram)

- No call setup at network layer
- Routers: no state about end-to-end connections
- No network-level concept of "connection"
- Packets forwarded using destination host address
- Packets between same source-dest pair may take different paths
- Data exchange among computers
- "Elastic" service, no strict timing req.
- "Smart" end systems (computers) can adapt, perform control, error recovery
- Simple inside network, complexity at "edge"
- Many link types: different characteristics and uniform service difficult

(b) Name **two** reasons for IPv6.

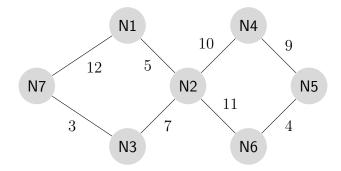
Solution:

(1 mark per item, max 2)

- Initial motivation: 32-bit address space soon to be completely allocated -Early 1990's
- Header format helps speed processing/forwarding
- Header changes to facilitate Quality of Service.

Total: 10

[02]


QUESTION 8

Given the following IP address and computer number, answer the questions that follow:

UJ wants 63 computers with an IP address of 222.8.34.21	
(a) What is the CIDR for this network?	[02]
Solution: $2^{6} = 64$ So it will be $32 - 6 = 26$	
(b) Provide this address in binary notation.	[02]
Solution: 11011110 00001000 00100010 00010101	
(c) Assuming classful addressing was used, what class does this address belong to?	[02]
Solution: Class C.	
(d) Calculate the network address of this block in dotted decimal notation.	[02]
Solution: 00 000000 = 0 222.8.34.0	
(e) Calculate the broadcast address of this block in dotted decimal notation.	[02]
Solution: 00 111111 = 63 222.8.34.63	
	Total: 10

QUESTION 9

Given the below network **routing graph** (with costs), answer the following questions that follow (Note that all working out must be shown, failure to do this may result in the student receiving zero for the question):

(a) What is the path with the **least cost** when communicating between N7 and N5. Is [02] this the **only** cost effective path?

Solution:

N7-N3-N2-N6-N5 = 25 (1 mark)Yes (1 mark)

(b) Given the local datagram **forwarding table** for node N2 below and the destination address is 74.4.125.246, which link will this packet be forwarded to? Please ensure to show all your calculations.

Destination Address range	Output Link Interface
01001011 00000100 01111101 111101**	N1
01001011 00000100 01111101 11111***	N2
01001011 00000100 01111101 1111****	N3
Otherwise	N4

Solution:

IP in binary: 01001011 00000100 01111101 11110110 (2marks) Link N1 (1 mark)

Total: 5

QUESTION 10

(a) Discuss the random access MAC protocol: **CSMA**. Explain how this protocol can [06] be improved to consider collisions?

Solution:

CSMA Discuss - 3 marks:

CSMA - Carrier Sence Multiple Access - listen before transmit:

If channel sensed idle: transmit entire frame

If channel sensed busy, defer transmission

Considering Collisions - 3 marks max:

CSMA/CD (Collision Detection): carrier sensing, deferral as in CSMA.

collisions detected within short time

colliding transmissions aborted, reducing channel wastage

collision detection: easy in wired LANs: measure signal strengths, compare transmitted, received signals

difficult in wireless LANs: received signal strength overwhelmed by local transmission strength

(b) There are many different Ethernet Standards. Define Ethernet and discuss the Fast [04] Ethernet Standard.

[03]

Solution:

- Fast Ethernet is a collective term for a number of Ethernet standards that carry traffic at the nominal rate of 100 Mbit/s, against the original Ethernet speed of 10 Mbit/s.
- Of the fast Ethernet standards 100BASE-TX is by far the most common and is supported by the vast majority of Ethernet hardware currently produced.
- Fast Ethernet was introduced in 1995 and remained the fastest version of Ethernet for three years before being superseded by gigabit Ethernet.

Total: 10

QUESTION 11

(a) You have been approached by a seller of second-hand books to create a mobile app [02] to sell their books and manage purchases. *Provide* two reasons why the Android platform would be a good choice for the creation of this app.

Solution:

(1 mark each, max 2 marks)

- It is a truly open free development platform based on Linux and open source
- A component-based architecture inspired by Internet mashups
- Large developer community
- Tons of built-in services out of the box
- Automatic management of the application life cycle
- High-quality graphics and sound
- Portability across a wide range of current and future hardware
- Software updates over the air.
- (b) *Briefly discuss* what a web service is and how it works.

Solution:

(3 marks max:)

- Piece of software that is available over the Internet
- Typically makes use of XML.
- Requires a client and a service.
- Therefore: A web service is programmatically available application logic that is exposed over the Internet

[03]

QUESTION 12

Provide Java source code for a **UDP Server** that runs on port 2021 and receives a greeting message from a UDP client. The server then appends the words "So nice to meet you!" to the client's message and sends it back to the client.

Solution:

```
import java.io.*;
2 import java.net.*;
3 class UDPServer {
    public static void main(String args[])
4
\mathbf{5}
    {
      try
6
      {
\overline{7}
         DatagramSocket serverSocket = new DatagramSocket(2021); //1
8
         byte[] receiveData = new byte[1024];
9
         byte[] sendData = new byte[1024];
10
         while(true)
11
12
         {
           DatagramPacket receivePacket =
13
               new DatagramPacket(receiveData, receiveData.length);
14
           serverSocket.receive(receivePacket);
15
           String sentence = new String( receivePacket.getData()); //
16
           System.out.println("RECEIVED: " + sentence);
17
18
           InetAddress IPAddress = receivePacket.getAddress(); //1
           int port = receivePacket.getPort();
19
           String appendedSentence = sentence + " So nice to meet you
20
               !"; //1
           sendData = appendedSentence.getBytes(); //1
21
           DatagramPacket sendPacket =
22
               new DatagramPacket(sendData, sendData.length, IPAddress
23
                   , port);//1
           serverSocket.send(sendPacket);
24
           }
25
      }
26
      catch(IOException io)
27
      {
28
         System.err.println(io.getMessage());
29
      }
30
    }
^{31}
32 }
```

Total: 10

QUESTION 13

The code below illustrates a **TCP client** that receives a binary file using the getfile() method. Fill in the missing code for sections A to I. Clearly label your answers.

```
import java.io.*;
2 import java.net.*;
3
4 class TCPBinGet
5 {
    public void getfile(String address, int port, String filename, int
6
        length)
    {
7
      File newFile = new File(filename);
8
      FileOutputStream fos = null;
9
      Socket fileSocket = null;
10
11
      try
      {
12
        fileSocket = __( A (1 marks) )__;
13
        InputStream is = __( B (1 marks) )__;
14
        fos = new FileOutputStream(newFile);
15
        byte[] buffer = new byte[512];
16
        int n = 0;
17
         int totalBytes = __( C (1 marks) )__;
18
         while (totalBytes != length)
19
         {
20
           __( D (2 marks) )__;
21
22
           __( E (1 marks) )__;
          fos.flush();
23
           __( F (1 marks) )__;
24
        }
25
      }
26
      catch (FileNotFoundException ex) { ex.printStackTrace(); }
27
      catch (IOException ex) { ex.printStackTrace(); }
28
      finally
29
      {
30
        if(__( G (1 marks)) )__
31
         ſ
32
           try { __( H (1 marks) )__; }
33
           catch (IOException e) { e.printStackTrace(); }
34
         }
35
        if (fos != null)
36
37
        {
           try {__( I (1 marks) )__ ; }
38
           catch (IOException e) { e.printStackTrace(); }
39
         }
40
      }
^{41}
42
    }
43 }
```

Solution:

Question	Code	Mark
А	new Socket(address, port)	1
В	new FileOutputStream(newFile);	1
С	0	1
D	n = is.read(buffer, 0, buffer.length)	2
E	fos.write(buffer, 0, n);	1
F	fos.flush();	1
G	totalBytes $+=$ n	1
Н	fileSocket.close()	1
I	fos != null	1

Total: 10

The End!