FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING	
MODULE	
CSCO3A3/CSC3A 10	
CAMPUS	COMPUTER SCIENCE 3A
ASSESSMENT	AUCKLAND PARK CAMPUS (APK)
	JULY 2O2O MEMO

DATE: 2020-07
SESSION: 08:00-11:00

ASSESOR(S):

PROF D.T. VAN DER HAAR MR R. MALULEKA

EXTERNAL MODERATOR:

DURATION: 180 MINUTES

PROF J. GELDENHUYS (SUN)
MARKS: 150

Please read the following instructions carefully:

1. This is a time restricted open book assessment. Answer all the questions in a text processor or on paper, which is scanned and submitted.
2. Write cleanly and legibly on any handwritten parts (if applicable).
3. This paper consists of 26 pages.
4. Ensure that your submission to Eve is complete and done before the cut-off time.

QUESTION 1

(a) Analyze the code below (which computes the sum of the first n entries of an integer array) and answer the questions that follow.

```
public int arrSum(int() A, n){
int prod;
for(int i=0; i <n; i++)
        prod += A(i)
    return prod;
        }
}
```

1. Will the given function return the sum of the array entries? Justify your answer.
2. Give a recursive version of the given function.
3. Draw a recursion trace for your new recursive function with $A=$ $\{2,4,6\}$ and $n=3$.

Solution:

1. Yes, int standard default value is 0 (2 mark)
2. 2 marks for base case, 2 marks for recursive case (4 marks)
```
public int recursiveSum(int() A, n){
if n == l
    return A(0);
else
    return A(n) + arrProd(A, n-1);
}
```

3. 3 marks for each return value, 1 marks for correct overall graphic

(b) Using pseudocode, describe how would you go about adding an element after a given node in a doubly linked list? You may use diagrams to support your answer.

Solution:

1 mark each, max 5:

1. Create a new node called storing new element newNode
2. Set newNode's next to be the given node's next
3. Set newNode's prev to be the given node
4. Update the given node's next node's prev to newNode
5. Update the given node's next to the newNode
6. Increase the size by 1 (may be excluded)

QUESTION 2

(a) Which kind of growth best characterizes each of these functions? (Redraw the table in your answer sheet, and put an \mathbf{X} in the appropriate cells)

	Constant	Logarithmic	Exponential	Polynomial
e^{n}				
$2^{5 n}$				
$(n+5)^{3}$				
$\log 4$				
$\log n^{2}$				
183				

Solution:

1. e^{n} - Exponential
2. $2^{5 n}$ - Exponential
3. $(n+5)^{3}$ - Polynomial
4. $\log 4$ - Constant
5. $\log n^{2}$-Logarithmic
6. 183-Constant
(b) Consider the following function and, using primitive counting, express
the runtime of this function in Big-Oh notation, along with a justification for your answer.
```
public int() prefSum(int() X, int n){
    int() PartSum = new int(n);
    for(int i = O; i < n;i++){
        PartSum(i) = 0;
        for(int j = 0; j<=i ; j++){
            PartSum(i) += X(j);
            }
        }
    return PartSum;
    }
```


Solution:

```
n+2 // array allocation is n, }1\mathrm{ for variable declaration,
    for assignment
    3n+2
    2n
    (3N+2)(n) = 3Nn+2n
    4(N)
    1
```

$N=1,2, \ldots n-1$. We take the max i.e. set $N=n-1$.
Therefore, $T(n)=8 n+5+(3 n(n-1)+4(n-1))=3 n^{2}+9 n+1$.
2 marks for counting primitive ops. 1 mark for $3 n^{2}+9 n+1$. The total operation is proportional to $O\left(n^{2}\right)$. (2 marks)
(c) Discuss the Positional List ADT, along with the benefits and limitations of using it.

Solution:

1. Referring to a place in a list without an index.
2. Can use the Position.
3. If we are using a linked list, then we could use the node as the position for an element in the list.
4. Using an index in a linked list means we have to iterate through all the elements, counting as we go (linear time).
5. Having a node means we can perform $O(1)$ insertions and removals, as the node acts as the position of an element in the list.

QUESTION 3

(a) Consider the following List Interface and write a class Queue that makes use of the List Interface and the Adapter design pattern to realize a Queue ADT. Note: You do not need to implement the List methods.

```
public interface List<T> {
    public Node<T> addAfter(Node<T> elem, T item);
    public Node}<\textrm{T}>\mathrm{ addFirst(T item);
    public Node<T> addLast(T item);
    public T remove(Node<T> elem);
    public Node}<T>\mathrm{ search(T elem);
    public Node<T> first();
    public boolean isEmpty();
    public Integer size();
}
```


Solution:

Exceptions could be included but are not essential

```
//2 marks for formatting
public class Queue<T> {
    private List<T> que: //2 marks
    public Queue() {
        que = new List<T>(); //7 mark
    }
    //2 marks
    public void enqueue(T item) {
        que. addLast(item);
    }
    //2 marks
    public T dequeue() {
        Node<T> elem = que.first();
        return que.remove(elem);
    }
    //1 marks
    public T front(T item) {
        return que.first();
    }
}
```

(b) Discuss how a Priority Queue can be used to sort a set of comparable elements. Including the two possible implementations and their performance.

Solution:

1. Insert unsorted elements in $P Q$, then remove in order by calling removeMin() repeatedly. (2)
2. A priority queue can be used to sort elements by way of an unsorted list or a sorted list. (1)
3. Unsorted: Insert takes O (1), RemoveMin and min take $O(n)$ time - sorting takes quadratic time (1)
4. Sorted: Insert takes $O(n)$, RemoveMin and min take $O(1)$ time sorting takes quadratic time (1)

QUESTION 4

(a) Consider the tree below, and answer the questions that follow:

Provide the output if the following traversals are followed:

1. What is the height of the tree?
2. What is the depth of node with element 2 ?
3. Is the tree a proper binary tree?
4. List the elements in the order of a inorder traversal of the tree.

Solution:

1. 2 (1 mark)
2. 1 (1 mark)
3. Yes (1 mark)
4. 21537 (2 mark)
(b) Illustrate the execution of the bottom-up construction of a heap on the following sequence. You only need to provide a graphical representation of the heap at each stage in the construction, including any intermediate operations.

$$
(5,6,1,10,7,56,43,23,15,9,8,32,2,35,36)
$$

Solution:

QUESTION 5

(a) Given a hash function $h(x)=x \bmod 17$ for a hash table that uses linear
probing, redraw the hash table below and insert the keys 84464722
72602999 in this order.

Solution:

| | | | | 72 | 22 | | | | | 60 | | | 46 | 47 | 29 | 99 | 84 | |
| :--- |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |

(b) What is the load factor for the above hash table after all the entries have been inserted?

Solution:

$8 / 17=0.47$
(c) Provide Java or pseudo source code for the remove method (that removes a key-pair e of type Entry $\langle K, V\rangle$ from List S) in a List-Based Dictionary.

Solution:

1 Algorithm remove(e):
2 Input: An entry e
3 Output: The removed entry e or null if e was not in D
4 \{We don't assume here that e stores its location in S\}
5 For each entry p in S.positions do
if $p . e l e m e n t()=e$ then
S.remove (p)
return e
return null \{there is no entry e in D\}
(d) Analyse the skip list below and illustrate using diagrams how you would insert an entry with a key of 76 and 2 heads coin flips.

Solution:

Any diagram that:

1. facilitates a skip search from 66 in S3,
2. a drop down to S1,
3. a probe to 73 .
4. Followed by a drop to the SO list
5. an insert of the 76 with a height of 2 (all the way to S 1).

QUESTION 6

The World Health Organisation (WHO) is responsible for collating any healthrelated information captured from around the world and performing analytics relevant to different health disease outbreaks. Discuss three (3) data structures that would be the most efficient way to implement this information system, along with its worst case run times of its key functions, advantages and disadvantages, and clearly indicate the reasons for your choice.

Solution:

Marks will be awarded based on the framework below (5 marks per option).

- The student will probably discuss a tree-based structure such as a Graph, AVL Tree, RB Tree or 24 Tree as the basis of storing an index
- In some cases the student may discuss a structure such as a hash table to store large amount of data indexed by a key and then searched based on that key.
- For the structures that the students chooses to discuss the advantages, disadvantages and efficiencies should be mentioned.

QUESTION 7

Consider the following AVL tree provided below. Draw the AVL tree state after each of the following operations. If the tree is rebalanced draw the state before and after it being balanced. Removal operations should follow from the tree that resulted from the insertion operations.

1. Insert nodes that contain the following keys: (inserted one-by-one, in the given order)

$$
9,8,40,35,43,18,3
$$

2. Delete nodes that contain the following keys: (removed one-by-one, in the given order)

$$
8,3
$$

Solution:

Insert 9
(1 mark):

Insert 8

(1 mark):

Insert 40
(1 mark):

Insert 35
(1 mark):

Insert 43

\ll Rebalancing >> (2 marks):

(1 mark):

Insert 18
(1 mark):

Insert 3
(1 mark):

Remove 8

\ll Rebalancing \gg (2 marks):

(1 mark):

Remove 3
(1 mark):

Total: 15 marks

QUESTION 8

Consider the following Red-Black tree provided below. Draw the Red-Black tree state after each of the following operations. If the tree is rebalanced draw the state before and after it being balanced. Removal operations should follow from the tree that resulted from the insertion operations.Removal operations should follow from the tree that resulted from the insertion operations.

1. Insert nodes that contain the following keys: (inserted one-by-one, in the given order)

$$
28,22,29,13,20,0
$$

2. Delete nodes that contain the following keys: (removed one-by-one, in the given order)

$$
33,28,49,29,24,22
$$

The Red-Black tree is in the current state:

Solution:

The following is a guide to the allocated marks, the student might combine operations into a single step (in which case the marks are granted). In the even of a mistake for a particular step, marks will be deducted for that step, and then partial marks will be awarded for the steps following the mistake (based on the correctness of the step relative to the mistake). If the number of mistakes results in a completely incorrect representation no marks will be awarded
Insert 28
(1 mark):

\ll Recolor \gg (2 marks):

Insert 13
(1 mark):

(1 mark):

\ll Recolor \gg (2 marks):

Remove 29
(1 mark):

Remove 24
(1 mark):

QUESTION 9

(a) Given the Red-Black tree below:

Provide a $(2,4)$ tree representation that is equivalent to the above RedBlack Tree.

Solution:

(b) Analyse the undirected graph representation below and answer the question that follows:

Show how the vertices will be visited if a Depth First Search (DFS) is performed, starting at $\mathbf{1}$, along with whether you think a DFS or breadth first search (BFS) will reach vertix 8 faster. You may use a figure to support your answer.

Solution:

() - means already visited (back edge)
[1 -> 3, 4, 6, 7, 8]
$[1->2,(3),(4),(6),(7),(8)]$
$[2->(1),(3),(4)]$
$[4->(3),(2),(1), 6]$
$[6->(4), 5,7]$
$[5 \rightarrow(6),(7), 8]$
$[7->(6),(5),(8)]$
[8-> (7), (5)]
DFS is much faster in this graph [2 marks]
(c) Provide a proof (by contradiction) for the following theorem:

A digraph admits a topological ordering if and only if it is a Directed Acyclic Graph

Solution:

Assume that G is not acyclic l.e., there is a cycle C in G Let the edges in the cycle C be:
$\left(v_{i 0}, v_{i 1}\right)\left(v_{i 1}, v_{i 2}\right) \ldots\left(v_{i k}, v_{i 0}\right)$ According to the given fact that G has a topological ordering, we have from the edges in the cycle C that: $v_{i 0}$ i $v_{i 1} \mathrm{i} v_{i 2} \ldots$ i $v_{i k} \mathbf{i} v_{i 0}$ This inequality is impossible - contradiction Therefore, the assumption that " G is not acyclic" is false:
G is acyclic

