

<u>PROGRAM</u>	:	BACHELOR OF ENGINEERING TECHNOLOGY CIVIL ENGINEERING	
<u>SUBJECT</u>	:	TRANSPORTATION ENGINEERING 3A	
<u>CODE</u>	:	TRACIA3	
<u>DATE</u>	:	WINTER EXAMINATION 31 MAY 2019	
DURATION	:	SESSION 1 (08:30 – 11:30)	
<u>WEIGHT</u>	:	40: 60	
FULL MARKS	:	102	
TOTAL MARKS	:	100	
EXAMINER	:	Mrs M. A. Kasenge	
MODERATOR	:	Ms. E Schmidt	
NUMBER OF PAGES	:	4 PAGES AND 27 ANNEXURES	
INSTRUCTIONS	: QUESTION PAPERS MUST BE HANDED IN.		
	:	CALCULATOR (ONE PER CANDIDATE)	
	:	ANSWER ALL THE QUESTIONS	

Programmable calculators will be allowed (one per candidate). Candidates are warned to erase from the memory of any calculator in their possession that can store alpha characters as text, notes or other information that could in any way assist in answering written ("theory") questions. If this instruction is not complied with it will be deemed that the candidate has in his possession under examination rules illegal material and will be disqualified.

QUESTION 1

- 1.1 A 15 kN passenger vehicle originally traveling on a straight and level road gets onto a section of the road with a horizontal curve of radius = 300 m. If the vehicle was originally traveling at 90 km/h, at sea level and has a front cross-sectional area of 3.2 m². Determine:
 - 1.1.1. The additional horsepower on the curve the vehicle must produce to maintain the original speed. (12)
 - 1.1.2. The total resistance force on the vehicle as it traverses the horizontal curve, and the total horsepower. (3)
- 1.2 The elevated section of the M1 highway goes through Johannesburg central business district (CBD) and crosses a local street as shown in Figure 1. The partial cloverleaf exit ramp is on a 3 percent downgrade, and all vehicles leaving the highway must stop at the intersection with the local street. Determine: (15)
 - 1.2.1 Minimum ramp radius
 - 1.2.2 Length of the ramp for the following conditions:
 - Maximum speed on highway = 100 km/h
 - Distance between exit sign and exit ramp = 81 m
 - Letter height of road sign = 75 mm
 - Perception-reaction time = 2.5 s
 - Maximum superelevation = 0.08
 - Expressway grade = +2 %.

Assume that a driver can read a road sign within his or her area of vision at a distance of 15 m for each 25 mm of letter height, and the driver sees the stop sign immediately on entering the ramp.

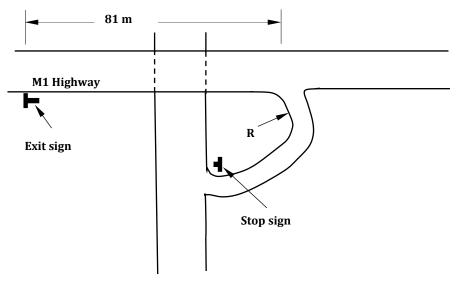


Fig. 1: Layout of M1 Highway Ramp and a Local Street

QUESTION 2

2.1. A traffic count taken between 7:00 a.m. and 2:00 p.m. on a rural highway found the following hourly volumes.

Time	Hourly volume	
07:00 - 08:00	310	
08:00 - 09:00	289	
09:00 - 10:00	241	
10:00 - 11:00	251	
11:00 - 12:00	267	
12:00 - 13:00	264	
13:00 - 14:00	243	

If these data were collected on a Tuesday in March, estimate the AADT on this section of highway.

Assume that the expansion factors given in Tables 4.6, 4.7, and 4.8 apply. (5)

- 2.2. The speeds of five vehicles were measured at the mid-point of one kilometre section of roadway. The speeds for vehicles 1, 2, 3, 4 and 5 were 75, 72, 86, 83 and 78 km/h respectively. Assuming all vehicles were travelling at constant speed over this roadway section, calculate the time-mean speed and space-mean speed. (5)
- 2.3. Vehicle time headways and spacing's were measured at a point along a highway, from a single lane, over the course of an hour. The average values were calculated as 2.5 s/veh for headway and 60 m/veh for spacing. Calculate the average speed of the traffic. (12)

[22]
[22]

QUESTION 3

A freeway has a capacity of 4,500 vehicles per hour and a constant traffic volume of 3,500 vehicles per hour at 8:00 a.m. on a particular day. At that time, a traffic accident happens and the freeway is closed for 15 minutes. At 8:15 a.m. the freeway is partially opened with a capacity of 2,500 vehicles per hour. At 8:30 a.m., the freeway is completely opened with the capacity of 4,500 vehicles per hour. Draw the queuing diagram (time versus number of vehicles) and determine the time of queue dissipation, longest queue length, total delay, average delay per vehicle, and the longest wait of any vehicle.

QUESTION 4

- 4.1. Given: Urban six-lane freeway, 3.5 m wide lanes, 1.5 m wide shoulder on the right, 0.5 m shoulder on the left, Grade 3% 1.5 km long, 6% trucks, 3% intercity buses.
 - Peak hour factor = 0.90
 - Average highway speed = 100 km/h
 - Determine service volumes at Levels of service A, B, C, D, and E. (10)
- 4.2. Given rural two-lane highway with 3.75 m wide lanes, 3 m shoulders, overall long section in level terrain, ideal alignment with an average highway speed of 120 km/h, 100% passing opportunity, 6% tucks. If the DHV is 1900 vehicles/hour, determine the level of service provided.
 - [20]

QUESTION 5

An approach to a pre-timed signal has 25 seconds -of effective green in a 60-second cycle. The approach volume is 500 veh/h and the saturation flow rate is 1400 veh/h.

Calculate the average vehicle delay assuming D/D/I queuing,

BACHELOR OF ENGINEERING TECHNOLOGY *CIVIL ENGINEERING*

TRANSPORTATION ENGINEERING 3A

TRACIA3

FORMULA SHEET

AND

ANNEXURES

WINTER EXAMINATIONS

31 MAY 2019

PREPARED BY MRS MA KASENGE

Visual acuity	$-\varphi = 2tan^{-1} \left(\frac{H}{2D}\right)$ $-VA = \frac{d}{D}$
Heavy vehicle Gross weight	$- W = 230 \left[\frac{LN}{N-1} + 23N + 36 \right]$
Acceleration as a Function of Velocity	$-\frac{du_t}{dt} = \alpha - \beta u_t$ $-t = \frac{1}{\beta} \ln \frac{(\alpha - \beta u_0)}{\alpha - \beta u_t}$ $-u_t = \frac{\alpha}{\beta} (1 - e^{-\beta t}) + u_0 e^{-\beta t}$ $-x = \int_0^t u_t dt = \left(\frac{\alpha}{\beta}\right) t - \frac{\alpha}{\beta^2} (1 - e^{-\beta t}) + \frac{u_0}{\beta} (1 - e^{-\beta t})$
Vehicle dynamic characteristics	$- F = ma + R_a + R_{rl} + R_g$
	$- R_{a} = \frac{\rho}{2} C_{D} A_{f} v^{2} \qquad P_{R_{a}} = \frac{\rho}{2} C_{D} A_{f} v^{3}$ $- R_{rl} = f_{rl} W \qquad P_{R_{rl}} = f_{rl} W v$ $- R_{c} = \frac{0.077 v^{2} W}{2gR} v^{2}$
	$- f_{rl} = 0.01 \left(1 + \frac{v}{44.73} \right) \\ - R_g = Wg$
Braking Distance	$- d_r = v_1 t_r$ $- d_s = d + d_r$ $- v_2^2 = v_1^2 \pm 2ad$
	$- d_B = \frac{(v_1^2 - v_2^2)}{2a} if vehicle comes to a stop d_B = \frac{v_1^2}{2a}$ $- d_B = \frac{v_1^2}{2g(\frac{a}{d} \pm G)} d_B = \frac{V^2}{254[\frac{a}{d} \pm G]}$
Stopping sight	$- u_u = \left(\frac{D_b}{D_t}u_t^2 + u_i^2\right)$ $SSD = \frac{Vt}{V} + \frac{V^2}{V}$
distance	$-SSD = \frac{v_t}{3.6} + \frac{v^2}{254[(\frac{a}{g})\pm G]}$ -SSD = 0.278ut + $\frac{u_1^2 - u_2^2}{254[(\frac{a}{g})\pm G]}$

Passing Sight	$- PSD = d_1 + d_2 + d_3 + d_4$				
Distance	$- d_1 = \frac{t_1(v_1 + v_2)}{2}$				
	$- d_2 = v_2 t_2$				
	$\begin{array}{l} - d_2 = \nu_2 t_2 \\ - d_4 = \frac{2}{3} d_2 \end{array}$				
Spot Speed Studies	$- \bar{\mathbf{u}} = \frac{\sum u_i}{N} \qquad \qquad \bar{\mathbf{u}} = \frac{\sum f_i u_i}{\sum f_i}$				
	$- S = \sqrt{\frac{\sum (u_i - \bar{u})^2}{N - 1}} \qquad S = \sqrt{\frac{\sum f_i (u_i - \bar{u})^2}{N - 1}}$				
	$- f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^{2/2x\sigma^2}}$				
	$- N = \left(\frac{Z\sigma}{d}\right)^2 \qquad \qquad Z = (X - \mu)/\sigma$ $- S_d = \sqrt{\left(\frac{S_1^2}{n_1}\right) + \left(\frac{S_2^2}{n_2}\right)}$				
	$- S_d = \sqrt{\left(\frac{S_1^2}{n_1}\right) + \left(\frac{S_2^2}{n_2}\right)}$				
t-Test Comparison	$- T = \frac{\bar{u}_1 - \bar{u}_2}{\left(S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)}$				
	$- S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$				
Number of Counts Stations	$- n = \frac{t_{\alpha/2,N-1}^2 \left(\frac{s^2}{d^2}\right)}{1 + (1/N) \left(t_{\alpha/2,N-1}^2\right) \left(\frac{s^2}{d^2}\right)}$				
Expansion	$- HEF = \frac{\text{total volume for 24-hr period}}{\text{volume for particular hour}}$				
Factors from Continuous	$- DEF = \frac{average \ total \ volume \ for \ week}{Average \ volume \ for \ particular \ day}$				
Count Stations	$- MEF = \frac{AADT}{ADT for particular month}$				

Traffic Stream Parameters	$- q = \frac{n * 3600}{T} \qquad q = \frac{n}{t} \qquad \qquad q = \frac{n}{\sum_{i=1}^{n} h_i} \qquad \qquad q = \frac{1}{\overline{h}}$						
	$- t = \sum_{i=1}^{n} h_i \qquad \overline{t} = \frac{1}{n} \sum_{i=1}^{n} t_i$						
	$- \overline{u}_t = \frac{\sum_{i=1}^n u_i}{n}$						
	$- \overline{u}_{S} = \frac{l}{\frac{1}{n}\sum_{i=1}^{n}t_{i}} \qquad \overline{u}_{S} = \frac{l}{\overline{t}} \qquad \overline{u}_{S} = \frac{1}{\frac{1}{n}\sum_{i=1}^{n}\left[\frac{1}{u_{i}}\right]}$						
	$- k = \frac{n}{l} \qquad \qquad k = \frac{n}{\sum_{i=1}^{n} S_i} \qquad \qquad k = \frac{1}{\overline{S}}$						
	$- l = \sum_{i=1}^{n} S_i$						
Basic Traffic	Speed-Density Model						
Stream Models	$- u = u_f \left(1 - \frac{k}{k_j} \right)$						
	Flow-Density Model						
	$- q = u_f \left(k - \frac{k^2}{k_j} \right)$						
	$- \frac{dq}{dk} = u_f \left(1 - \frac{2k}{k_j} \right) = 0$						
	$- k_{cap} = \frac{k_j}{2}$						
	$- u_{cap} = u_f \left(1 - \frac{k_j}{2k_j} \right) = \frac{u_f}{2}$						
	$- q_{cap} = u_{cap} k_{cap} \qquad \qquad q_{cap} = \frac{u_f k_j}{4}$						
	Speed-Flow Model						
	$- k = k_j \left(1 - \frac{u}{u_f} \right)$ $- q = k_j \left(u - \frac{u^2}{u_f} \right)$						
	$- q = k_j \left(u - \frac{u^2}{u_f} \right)$						

Models of Traffic Flow	$P(n) = \frac{(\lambda t)^n e^{-\lambda t}}{n!}$		
	$\lambda = \frac{q}{3600}$		
Queuing Theory	D/D/1		
	$- \lambda = \frac{3600}{h} = veh/h$		
	$- \mu = \frac{3600}{h} = veh/h$		
	M/D/1	$ \rho = \frac{\lambda}{\mu} $	$\rho < 1.0$
	$- \overline{Q} = \frac{\rho}{2(1-\rho)} = veh$		
	$-\overline{w} = \frac{1}{2\mu} \left(\frac{\rho}{1-\rho} \right) = min/veh$		
	$- \overline{t} = \frac{1}{2\mu} \left(\frac{2-\rho}{1-\rho} \right) = min/veh$		
	M/M/1	$ ho = rac{\lambda}{\mu}$	ho < 1.0
	$- \overline{Q} = \frac{\rho^2}{(1-\rho)} = veh$		
	$- \overline{w} = \frac{1}{\mu} \left(\frac{\lambda}{\mu - \lambda} \right) = min/veh$		
	$-\overline{t}=rac{1}{\mu-\lambda}=min/veh$		
	M/M/N	$ \rho = \frac{\lambda}{\mu} $	$\rho/N < 1.0$
	$- \overline{Q} = \frac{P_0 \rho^{N+1}}{N!N} \left[\frac{1}{\left(1 - \frac{\rho}{N}\right)^2} \right] = veh$		
	$- \overline{w} = \frac{\rho + \overline{Q}}{\lambda} - \frac{1}{\mu} = min/veh$ $- \overline{t} = \frac{\rho + \overline{Q}}{\lambda} = min/veh$		
	$- \overline{t} = \frac{\rho + \overline{Q}}{\lambda} = min/veh$		
	M/M/N (Stuff) — Probability of having no vehicles		

	$P_{0} = \frac{1}{\sum_{nc=0}^{N-1} \frac{\rho^{n_{c}}}{n_{c}!} + \frac{\rho^{N}}{N! \left(1 - \frac{\rho}{N}\right)}}$
	 Probability of having <i>n</i> vehicles
	$P_n = \frac{\rho^n P_0}{n!} \text{for } n \le N$
	$P_n = \frac{\rho^n P_0}{N^{n-N} N!} \text{for } n \ge N$
	 Probability of being in a queue
	$P_{n>N} = \frac{P_0 \rho^{N+1}}{N! N \left(1 - \frac{\rho}{N}\right)}$
Intersection	$-R_{min} = \frac{V^2}{127(e+f_s)}$
Design	$-f_s = 0.21 - 0.001 \text{V}$
	$- d_{ISD} = 0.278 V_{major} * t_g$
	$- t_g = t_a + \frac{w + L_a}{0.167 V_{minor}}$
LOS	$-PHF = \frac{V}{4*V_{15}}$
Basic Freeway	$- FFS = BFFS - f_{LW} - f_{LC} - f_N - f_{ID}$
Segment	$- f_{HV} = \frac{1}{1 + P_T(E_T - 1) + P_R(E_R - 1)}$
	$- v_p = \frac{V}{PFH*N*f_{HV}*fp}$
	$- V = vp * PHF * N * f_{HV} * fp$
	$-D = \frac{v_p}{s}$
	- DHV = AADT * K * D
LOS	$- V = v_p * PHF * N * f_{HV}$
Multilane	$- FFS = BFFS - f_{LW} - f_{LC} - f_M - f_A$
Highway	$- TLC = LC_R + LC_L$

LOS	$- FFS = S_{FM} + 0.0125 \frac{V_f}{f_{HV}}$
Two Lane Highway	$- v_p = \frac{V}{PHF * f_G * f_{HV}}$
	$- FFS = BFFS - f_{LS} - f_A$
	$- ATS = FFS - 0.0125v_p - f_{np}$
	$- PTSF = BPTSF + f_{\frac{d}{np}}$
	$- BPTSF = 100(1 - e^{-0.000879v_p})$

BRAKE FORCE COEFFICIENTS FOR VARIOUS SPEEDS			
Speed (Km/h)	Brake Force Coefficients		
40	0.37		
60	0.32		
80	0.30		
100	0.29		
120	0.28		
140	0.27		

Constant Corresponding to Level of Confidence			
Confidence Level (%)	Constant Z		
68.3	1.00		
86.6	1.50		
90.0	1.64		
95.0	1.96		
95.5	2.00		
98.8	2.50		
99.0	2.58		
99.7	3.00		

HOURLY EXPANSION FACTORS FOR A RURAL PRIMARY ROAD					
Hour	Volume	HEF	Hour	Volume	HEF
6:00-7:00 a.m.	294	42.00	6:00-7:00 p.m.	743	16.62
7:00-8:00 a.m.	426	29.00	7:00-8:00 p.m.	706	17.49
8:00-9:00 a.m.	560	22.05	8:00-9:00 p.m.	606	20.38
9:00–10:00 a.m.	657	18.80	9:00–10:00 p.m.	489	25.26
10:00–11:00 a.m.	722	17.10	10:00–11:00 p.m.	396	31.19
11:00–12:00 p.m.	667	18.52	11:00–12:00 a.m.	360	34.31
12:00-1:00 p.m.	660	18.71	12:00-1:00 a.m.	241	51.24
1:00–2:00 p.m.	739	16.71	1:00-2:00 a.m.	150	82.33
2:00-3:00 p.m.	832	14.84	2:00-3:00 a.m.	100	123.50
3:00-4:00 p.m.	836	14.77	3:00-4:00 a.m.	90	137.22
4:00-5:00 p.m.	961	12.85	4:00-5:00 a.m.	86	143.60
5:00-6:00 p.m.	892	13.85	5:00–6:00 a.m.	137	90.14

DAILY EXPANSION FACTORS FOR A RURAL PRIMARY ROAD									
Day of Week	Average Volume	DEF							
Monday	10,714	1.002							
Tuesday	9722	1.104							
Wednesday	11,413	0.940							
Thursday	10,714	1.002							
Friday	13,125	0.818							
Saturday	11,539	0.930							
Sunday	7895	1.359							

MONTHLY EXPANSION FACTORS FOR A RURAL PRIMARY ROAD									
Month	ADT	MEF							
January	1350	1.756							
February	1200	1.975							
March	1450	1.635							
April	1600	1.481							
Мау	1700	1.394							
June	2500	0.948							
July	4100	0.578							
August	4550	0.521							
September	3750	0.632							
October	2500	0.948							
November	2000	1.185							
December	1750	1.354							

Table 6.5: Recommended sight distances for intersections with no traffic control (Case A)								
Design speed (km/h)	Sight distance (m)							
20	20							
30	25							
40	30							
50	40							
60	50							
70	65							
80	80							
90	95							
100	120							
110	140							
120	165							

	Table 6.6: Adjustment factors for approach sight distances based on approach gradient										
Approach		Design speed (km/h)									
gradient	30	40	50	60	70	80	90	100	110	120	
(%)											
-6	1,1	1,1	1,1	1,1	1,1	1,2	1,2	1,2	1,2	1,2	
-5	1,0	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,2	1,2	
-4	1,0	1,0	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	
-3 to +3	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
+4	1,0	1,0	1,0	0,9	0,9	0,9	0,9	0,9	0,9	0,9	
+5	1,0	1,0	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	
+6	1,0	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	

Table 6.7: Travel Times Used to Determine the Leg of the Departure Sight Triangle along the Major Road for Right and Left Turns from Stop-Controlled Approaches (Cases B1 and B2)

Design vehicle	Travel time (s) at design speed of major road
Passenger car	7,5
Single-unit truck	9,5
Semi-trailer	11,5

Adjustment for multilane highways:

For right turns onto two-way highways with more than two lanes, add 0,<u>5</u> seconds for passenger cars or 0,7 seconds for trucks for each additional lane, in excess of one, to be crossed by the turning vehicle.

For left turns, no adjustment is necessary

Adjustment for approach gradients:

If the approach gradient on the minor road exceeds +3 per cent:

- Add 0,1 seconds per percent gradient for left turns
- Add 0,2 seconds per percent gradient for right turns

Table 6.8: Travel times used to determine the leg of the departure sight triangle along the
major road to accommodate crossing manoeuvres at stop-controlled intersections (Case B3)

Design vehicle	Travel time (s) at Design speed of major road
Passenger car	6,5
Single-unit truck	8,5
Semi trailer	10,5
Adjustment for multilane highways:	I
For crossing a major road with more than two la	nes, add 0,5 seconds for passenger cars and $0,7$
seconds for trucks for each additional lane to be	e crossed. In the case of dual carriageways with
inadequate width of median for refuge, count the m	edian as another lane to be crossed.
Adjustment for approach grades:	
If the environment environment end the primer read even	$d_{2} + 2.0$ add 0.2 casenda per percent gradient in

If the approach gradient of the minor road exceeds +3 %, add 0,2 seconds per percent gradient in excess of 3 %.

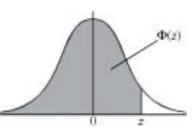
Table 6.9: Leg of approach sight triangle along the minor road to accommodate crossing manoeuvres from yield-controlled approaches								
Design speed	Distance along minor road	Travel time from decision						
(km/h)	(m)	point to major road $(t_a)^{a,b}$						
30	30	3,4						
40	40	3,7						
50	50	4,1						
60	65	4,7						
70	85	5,3						
80	110	6,1						
90	140	6,8						
100	165	7,3						
110	190	7,8						
120	230	8,6						

a For minor-road approach gradients that exceed +3 per cent, multiply by the appropriate adjustment factor from Table 6.6.

b Travel time applies to a vehicle that slows before crossing the intersection but does not stop.

Table 6.10: Travel times used to determine the sight distance along the major road to accommodate right turns from the major road (Class F) Design vehicle Travel time (s) at design speed of major road							
Passenger car	5,5						
Single-unit truck	6,5						
Semi trailer	7,5						
Adjustment for multilane highways:	1						

For right turns that have to cross more than one opposing lane, add 0,5 s for passenger cars and 0,7 s for trucks for each additional lane to be crossed. In the case of dual carriageways where the median is not sufficiently wide to provide refuge for the turning vehicle, the median should be regarded as an additional lane to be crossed.


THE NORMAL DISTRIBUTION FUNCTION

If Z has a normal distribution with mean 0 and variance 1 then, for each value of z, the table gives the value of $\Phi(z)$, where

$$\Phi(z) = \mathbf{P}(Z \le z) \, .$$

For negative values of z use $\Phi(-z) = 1 - \Phi(z)$.

z	0	1	2	3	4	5	6	7	8	9	1	2	3		5 DD	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0 5160	0.5199	0.5239	0.5279	0.5319	0.5359	4	8	12		20		28	32	36
0.1	0.5398	0.5438	0.5478	0.5517	1	0.5596		1	0.5714	0.5753	4	8	12		20	I		32	
0.2	0.5793	0.5832	0.5871	0.5910		0.5987		0.6064	0.6103	0.6141	4	8	12	-	19		_	31	
0.3	0.6179	0.6217	0.6255	0.6293	0.6331			0.6443	0.6480	0.6517	4	7	11		19			30	
0.4	0.6554	0.6591	0.6628	0.6664		0.6736		0.6808	0.6844	0.6879	4	7	11		18			29	
0.5	0.6915	0.6950	0.6985	0.7019	1	0.7088		0.7157	0.7190	0.7224	3	7	10		17	I		27	-
0.6	0.7257	0.7291	0.7324	0.7357		0.7422		0.7486	0.7517	0.7549	3	7	10		16			26	
0.7	0.7580	0.7611	0.7642	0.7673		0.7734		0.7794	0.7823	0.7852	3	6	9	12		18		24	
0.8	0.7881	0.7910	0.7939	0.7967		0.8023		0.8078	0.8106	0.8133	3	5	8			16		22	
0.9	0.8159	0.8186	0.8212	0.8238		0.8289		0.8340	0.8365	0.8389	3	5	8		13	15		20	
1.0	0.8413	0.8438	0.8461	0.8485		0.8531		0.8577	0.8599	0.8621	2	5	7	9	12	14		19	
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830	2	4	6	8	10	12	14	16	18
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	2	4	6	7	9	11		15	- 1
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	2	3	5	6	8	10	11	13	14
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	1	3	4	6	7	8	10	11	13
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	1	2	4	5	6	7	8	10	11
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	1	2	3	4	5	6	7	8	9
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	1	2	3	4	4	5	6	7	8
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	1	1	2	3	4	4	5	6	6
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	1	1	2	2	3	4	4	5	5
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	0	1	1	2	2	3	3	4	4
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	0	1	1	2	2	2	3	3	4
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	0	1	1	1	2	2	2	3	3
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	0	1	1	1	1	2	2	2	2
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	0	0	1	1	1	1	1	2	2
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	0	0	0	1	1	1	1	1	1
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	0	0	0	0	1	1	1	1	1
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	0	0	0	0	0	1	1	1	1
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	0	0	0	0	0	0	0	1	1
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	0	0	0	0	0	0	0	0	0

LEVEL-OF-SERVICE THRESHOLDS FOR A BASIC FREEWAY SEGMENT					
LOS	LOS Density Range (pc/km/ln)				
А	0-7				
В	> 7-11				
С	> 11-16				
D	> 16-22				
Е	> 22-28				
F	> 28				

EXHIBIT 23-2. LOS CRITERIA FOR BASIC FREEWAY SEGMENTS									
			LOS						
Criteria	А	В	С	D	Е				
	FFS = 12	20 km/h	I	I					
Maximum density (pc/km/ln)	7	11	16	22	28				
Minimum speed (km/h)	120.0	120.0	114.6	99.6	85.7				
Maximum v/c	0.35	0.55	0.77	0.92	1.00				
Maximum service flow rate (pc/h/ln)	840	1320	1840	2200	2400				
	FFS = 1	10 km/h							
Maximum density (pc/km/ln)	7	11	16	22	28				
Minimum speed (km/h)	110.0	110.0	108.5	97.2	83.9				
Maximum v/c	0.33	0.51	0.74	0.91	1.00				
Maximum service flow rate (pc/h/ln)	770	1210	1740	2135	2350				
	FFS = 10	00 km/h							
Maximum density (pc/km/ln)	7	11	16	22	28				
Minimum speed (km/h)	100.0	100.0	.0 100.0		82.1				
Maximum v/c	0.30	0.48	0.70	0.90	1.00				
Maximum service flow rate (pc/h/ln)	700	1100	1600	2065 2300					
	FFS = 9	0 km/h							
Maximum density (pc/km/ln)	7	11	16	22	28				
Minimum speed (km/h)	90.0	90.0	90.0	89.1	80.4				
Maximum v/c	0.28	0.44	0.64	0.87	1.00				
Maximum service flow rate (pc/h/ln)	630	990	1440	1955	2250				

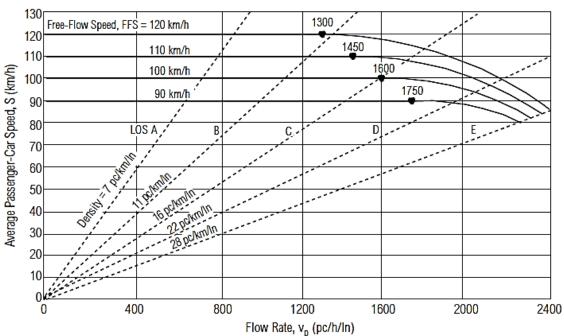


EXHIBIT 23-3. SPEED-FLOW CURVES AND LOS FOR BASIC FREEWAY SEGMENTS

Note:

Capacity varies by free-flow speed. Capacity is 2400, 2350, 2300, and 2250 pc/h/ln at free-flow speeds of 120, 110, 100, and 90 km/h, respectively.

For $90 \le FFS \le 120$ and for flow rate (v_p) (3100 - 15FFS) < $v_p \le (1800 + 5FFS)$, $S = FFS - \left[\frac{1}{28}(23FFS - 1800)\left(\frac{v_p + 15FFS - 3100}{20FFS - 1300}\right)^{26}\right]$ For $90 \le FFS \le 120$ and

 $v_p \le (3100 - 15FFS),$ S = FFS

EXHIBIT 23-4. ADJUSTMENTS FOR LANE WIDTH					
Lane Width (m) Reduction in Free-Flow Speed, fLW (km/h)					
3.6	0.0				
3.5	1.0				
3.4	2.1				
3.3	3.1				
3.2	5.6				
3.1	8.1				
3.0	10.6				

EXH	EXHIBIT 23-5. ADJUSTMENTS FOR RIGHT-SHOULDER LATERAL CLEARANCE					
		Reduction in Free-Flo	ow Speed, f _{LC} (km/h)			
Right-Shoulder Lateral Clearance		Lanes in On	e Direction			
(m)	2	3	4	≥ 5		
≥ 1.8	0.0	0.0	0.0	0.0		
1.5	1.0	0.7	0.3	0.2		
1.2	1.9	1.3	0.7	0.4		
0.9	2.9	1.9	1.0	0.6		
0.6	3.9	2.6	1.3	0.8		
0.3	4.8	3.2	1.6	1.1		
0.0	5.8	3.9	1.9	1.3		

EXHIBIT 23-6. ADJUSTMENTS FOR NUMBER OF LANE			
Number of Lanes (One Direction) Reduction in Free-Flow Speed, fN (km/h)			
≥ 5	0.0		
4	2.4		
3	4.8		
2	7.3		

EXHIBIT 23-7. ADJUSTMENTS FOR INTERCHANGE DENSITY					
Interchanges per Kilometre	Reduction in Free-Flow Speed, fID (km/h)				
≤ 0.3	0.0				
0.4	1.1				
0.5	2.1				
0.6	3.9				
0.7	5.0				
0.8	6.0				
0.9	8.1				
1.0	9.2				
1.1	10.2				
1.2	12.1				

EXHIBIT 23-8. PASSENGER-CAR EQUIVALENTS ON EXTENDED FREEWAY SEGMENTS						
Factor		Type of Terrain				
Factor	Level	Rolling	Mountainous			
E_T (trucks and buses)	1.5	2.5	4.5			
E _R (RVs)	1.2	2.0	4.0			

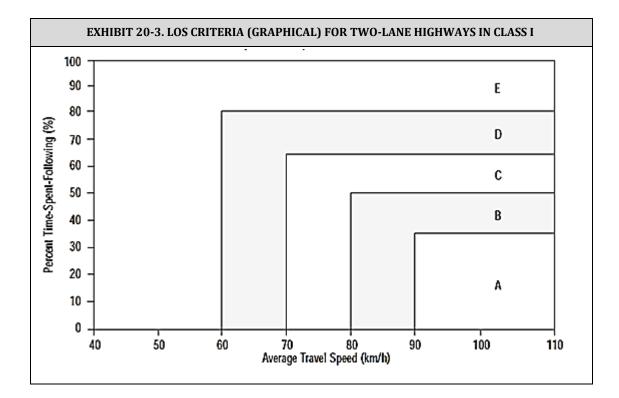

	EXHIBIT 23-9. PASSENGER-CAR EQUIVALENTS FOR TRUCKS AND BUSES ON UPGRADES									
					Ет					
Upgrade (%)	Length (km)		Р	ercentage	e of Trucks	s and Buse	es			
(%)		2	4	5	6	8	10	15	20	25
< 2	All	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	0.0-0.4	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 0.4-0.8	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
≥ 2-3	> 0.8-1.2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 1.2-1.6	2.0	2.0	2.0	2.0	1.5	1.5	1.5	1.5	1.5
	> 1.6-2.4	2.5	2.5	2.5	2.5	2.0	2.0	2.0	2.0	2.0
	> 2.4	3.0	3.0	2.5	2.5	2.0	2.0	2.0	2.0	2.0
	0.0-0.4	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 0.4-0.8	2.0	2.0	2.0	2.0	2.0	2.0	1.5	1.5	1.5
> 3-4	> 0.8-1.2	2.5	2.5	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	> 1.2-1.6	3.0	3.0	2.5	2.5	2.5	2.5	2.0	2.0	2.0
	> 1.6-2.4	3.5	3.5	3.0	3.0	3.0	3.0	2.5	2.5	2.5
	> 2.4	4.0	3.5	3.0	3.0	3.0	3.0	2.5	2.5	2.5
	0.0-0.4	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 0.4-0.8	3.0	2.5	2.5	2.5	2.0	2.0	2.0	2.0	2.0
> 4-5	> 0.8-1.2	3.5	3.0	3.0	3.0	2.5	2.5	2.5	2.5	2.5
	> 1.2-1.6	4.0	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0
	> 1.6	5.0	4.0	4.0	4.0	3.5	3.5	3.0	3.0	3.0
	0.0-0.4	2.0	2.0	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	> 0.4-0.5	4.0	3.0	2.5	2.5	2.0	2.0	2.0	2.0	2.0
> 5-6	> 0.5-0.8	4.5	4.0	3.5	3.0	2.5	2.5	2.5	2.5	2.5
	> 0.8-1.2	5.0	4.5	4.0	3.5	3.0	3.0	3.0	3.0	3.0
	> 1.2-1.6	5.5	5.0	4.5	4.0	3.0	3.0	3.0	3.0	3.0
	> 1.6	6.0	5.0	5.0	4.5	3.5	3.5	3.5	3.5	3.5
	0.0-0.4	4.0	3.0	2.5	2.5	2.5	2.5	2.0	2.0	2.0
	> 0.4-0.5	4.5	4.0	3.5	3.5	3.5	3.0	2.5	2.5	2.5
> 6	> 0.5-0.8	5.0	4.5	4.0	4.0	3.5	3.0	2.5	2.5	2.5
	> 0.8-1.2	5.5	5.0	4.5	4.5	4.0	3.5	3.0	3.0	3.0
	> 1.2-1.6	6.0	5.5	5.0	5.0	4.5	4.0	3.5	3.5	3.5
	> 1.6	7.0	6.0	5.5	5.5	5.0	4.5	4.0	4.0	4.0

	EXHIBIT 23-10. PASSENGER-CAR EQUIVALENTS FOR RVs ON UPGRADES									
				·		ER			-	
					Percenta	ge of RVs				
Upgrade (%)	Length (km)	2	4	5	6	8	10	15	20	25
≤ 2	All	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
> 2-3	0.0-0.8	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
	> 0.8	3.0	1.5	1.5	1.5	1.5	1.5	1.2	1.2	1.2
	0.0-0.4	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
> 3-4	> 0.4-0.8	2.5	2.5	2.0	2.0	2.0	2.0	1.5	1.5	1.5
	> 0.8	3.0	2.5	2.5	2.5	2.0	2.0	2.0	1.5	1.5
	0.0-0.4	2.5	2.0	2.0	2.0	1.5	1.5	1.5	1.5	1.5
> 4-5	> 0.4-0.8	4.0	3.0	3.0	3.0	2.5	2.5	2.0	2.0	2.0
	> 0.8	4.5	3.5	3.0	3.0	3.0	2.5	2.5	2.0	2.0
	0.0-0.4	4.0	3.0	2.5	2.5	2.5	2.0	2.0	2.0	1.5
> 5	> 0.4-0.8	6.0	4.0	4.0	3.5	3.0	3.0	2.5	2.5	2.0
	> 0.8	6.0	4.5	4.0	4.5	3.5	3.0	3.0	2.5	2.0

EXHIBIT 23-11. PASSENGER-CAR EQUIVALENTS FOR TRUCKS AND BUSES ON DOWNGRADES							
ET							
Percentage of Trucks							
Downgrade (%)	Length (km)	5	10	15	20		
< 4	All	1.5	1.5	1.5	1.5		
4-5	≤ 6.4	1.5	1.5	1.5	1.5		
4-5	> 6.4	2.0	2.0	2.0	1.5		
> 5-6	≤ 6.4	1.5	1.5	1.5	1.5		
> 5-6	> 6.4	5.5	4.0	4.0	3.0		
> 6	≤ 6.4	.4 1.5 1.5 1.5 1.5					
> 6	> 6.4	7.5	6.0	5.5	4.5		

EXHIBIT 23-12. URBAN FREEWAY FFS AND INTERCHANGE SPACING (SEE FOOTNOTE FOR ASSUMED VALUES)						
Free-Flow Speed (km/h)						
Number of Lanes		Interchange Spacing (km)				
	1.00	1.25	2.00	3.00		
2	94	97	101	103		
3	96	99	103	105		
4	98	102	106	108		
5	99	104	108	110		

EXHIBIT 20-2. LOS CRITERIA FOR TWO-LANE HIGHWAYS IN CLASS I					
LOS	Percent Time-Spent- Following	Average Travel Speed (km/h)			
А	≤ 35	> 90			
В	> 35-50	> 80-90			
С	> 50-65	> 70-80			
D	> 65-80	> 60-70			
Е	> 80	≤ 60			

EXHIBIT 20-4. LOS CRITERIA FOR TWO-LANE HIGHWAYS IN CLASS II					
LOS	Percent Time-Spent-Following				
А	≤ 40				
В	> 40–55				
С	> 55-70				
D	> 70-85				
Е	> 85				

EXHIBIT 20-5. ADJUSTMENT (fLS) FOR LANE WIDTH AND SHOULDER WIDTH						
	Reduction in FFS (km/h)					
Lane Width (m)	Shoulder Width (m)					
(111)	$\geq 0.0 < 0.6$ $\geq 0.6 < 1.2$ $\geq 1.2 < 1.8$ ≥ 1.8					
2.7 < 3.0	10.3	7.7	5.6	3.5		
≥ 3.0 < 3.3	8.5	5.9	3.8	1.7		
≥ 3.3 < 3.6	7.5	4.9	2.8	0.7		
≥ 3.6	6.8	4.2	2.1	0.0		

EXHIBIT 20-6. ADJUSTMENT (f _A) FOR ACCESS-POINT DENSITY				
Access Points per km	Reduction in FFS (km/h)			
0	0.0			
6	4.0			
12	8.0			
18	12.0			
≥ 24	16.0			

EXHIBIT 20-7. GRADE ADJUSTMENT FACTOR (f _g) TO DETERMINE SPEEDS ON TWO-WAY AND DIRECTIONAL SEGMENTS					
Range of Two-Way Flow Range of Directional Type of Terrain					
Rates (pc/h)	Flow Rates (pc/h)	Level	Rolling		
0-600	0-300	1.00	0.71		
> 600-1200	> 300-600	1.00	0.93		
> 1200	> 600	1.00	0.99		

EXHIBIT 20-8. GRADE ADJUSTMENT FACTOR (fG) TO DETERMINE PERCENT TIME-SPENT-FOLLOWING ON TWO-WAY AND DIRECTIONAL SEGMENTS					
Range of Two-Way Flow Rates Range of Directional Flow Type of Terrain					
(pc/h)	Rates (pc/h)	Level	Rolling		
0-600	0-300	1.00	0.77		
> 600-1200	> 300-600	1.00	0.94		
> 1200	> 600	1.00	1.00		

EXHIBIT 20-9.	•	ALENTS FOR TRUCKS AN AND DIRECTIONAL SEGM		AINE SPEEDS ON		
	Range of Two-Way	Range of Directional	Type of	of Terrain		
Vehicle Type	Flow Rates (pc/h)	Flow Rates (pc/h)	Level	Rolling		
	0-600	0-300	1.7	2.5		
Trucks, E _T	> 600-1,200	> 300-600	1.2	1.9		
	> 1,200	> 600	1.1	1.5		
	0-600	0-300	1.0	1.1		
RVs, E _R	> 600-1,200	> 300-600	1.0	1.1		
	> 1,200	> 600	1.0	1.1		

EXHIBIT 2	EXHIBIT 20-10. PASSENGER-CAR EQUIVALENTS FOR TRUCKS AND RVS TO DETERMINE PERCENT TIME-SPENT-FOLLOWING ON TWO-WAY AND DIRECTIONAL SEGMENTS					
			Type of	Terrain		
Vehicle Type	Range of Two-Way Flow Rates (pc/h)	Range of Directional Flow Rates (pc/h)	Level	Rolling		
	0-600	0-300	1.1	1.8		
Trucks, ET	> 600-1,200	> 300-600	1.1	1.5		
	> 1,200	> 600	1.0	1.0		
	0-600	0-300	1.0	1.0		
RVs, E _R	> 600-1,200	> 300-600	1.0	1.0		
	> 1,200	> 600	1.0	1.0		

EXHIBIT 20-11. AD	EXHIBIT 20-11. ADJUSTMENT (fnp) FOR EFFECT OF NO-PASSING ZONES ON AVERAGE TRAVEL SPEED ON TWO-WAY SEGMENTS					
Two-Way Demand		Reduction in Average Travel Speed (km/h)				
Flow Rate, vp (pc/h)		No-Passing Zones (%)				
	0	20	40	60	80	100
0	0.0	0.0	0.0	0.0	0.0	0.0
200	0.0	1.0	2.3	3.8	4.2	5.6
400	0.0	2.7	4.3	5.7	6.3	7.3
600	0.0	2.5	3.8	4.9	5.5	6.2
800	0.0	2.2	3.1	3.9	4.3	4.9
1000	0.0	1.8	2.5	3.2	3.6	4.2
1200	0.0	1.3	2.0	2.6	3.0	3.4
1400	0.0	0.9	1.4	1.9	2.3	2.7
1600	0.0	0.9	1.3	1.7	2.1	2.4
1800	0.0	0.8	1.1	1.6	1.8	2.1
2000	0.0	0.8	1.0	1.4	1.6	1.8
2200	0.0	0.8	1.0	1.4	1.5	1.7
2400	0.0	0.8	1.0	1.3	1.5	1.7
2600	0.0	0.8	1.0	1.3	1.4	1.6
2800	0.0	0.8	1.0	1.2	1.3	1.4
3000	0.0	0.8	0.9	1.1	1.1	1.3
3200	0.0	0.8	0.9	1.0	1.0	1.1

Two-Way	Increase in Percent Time-Spent-Following (%)					
Flow	No-Passing Zones (%)					
Rate, v _p (pc/h)	0	20	40	60	80	100
		Direct	tional Split = 50	/50		
≤ 200	0	10.1	17.2	20.2	21	21.8
400	0	12.4	19	22.7	23.8	24.8
600	0	11.2	16	18.7	19.7	20.5
800	0	9	12.3	14.1	14.5	15.4
1400	0	3.6	5.5	6.7	7.3	7.9
2000	0	1.8	2.9	3.7	4.1	4.4
2600	0	1.1	1.6	2	2.3	2.4
3200	0	0.7	0.9	1.1	1.2	1.4
		Directio	onal Split = 60/4	40		
≤ 200	1.6	11.8	17.2	22.5	23.1	23.7
400	0.5	11.7	16.2	20.7	21.5	22.2
600	0	11.5	15.2	18.9	19.8	20.7
800	0	7.6	10.3	13	13.7	14.4
1400	0	3.7	5.4	7.1	7.6	8.1
2000	0	2.3	3.4	3.6	4	4.3
≥ 2600	0	0.9	1.4	1.9	2.1	2.2
		Directio	onal Split = 70/3	30		
≤ 200	2.8	13.4	19.1	24.8	25.2	25.5
400	1.1	12.5	17.3	22	22.6	23.2
600	0	11.6	15.4	19.1	20	20.9
800	0	7.7	10.5	13.3	14	14.6
1400	0	3.8	5.6	7.4	7.9	8.3
≥ 2000	0	1.4	4.9	3.5	3.9	4.2
		Directio	onal Split = 80/2	20		
≤ 200	5.1	17.5	24.3	31	31.3	31.6
400	2.5	15.8	21.5	27.1	27.6	28
600	0	14	18.6	23.2	23.9	24.5
800	0	9.3	12.7	16	16.5	17
1400	0	4.6	6.7	8.7	9.1	9.5
≥ 2000	0	2.4	3.4	4.5	4.7	4.9
		Directio	onal Split = 90/1	10		
≤ 200	5.6	21.6	29.4	37.2	37.4	37.6
400	2.4	19	25.6	32.2	32.5	32.8
600	0	16.3	21.8	27.2	27.6	28
800	0	10.9	14.8	18.6	19	19.4
≥1400	0	5.5	7.8	10	10.4	10.7

FYHIRIT 20.12 ADDISTMENT (f.)FOR COMBINED FEFECT OF DIRECTIONAL DISTRIBUTION OF

EXHIBIT 20-1	3. GRADE ADJUSTMENT FA	CTOR (fG) FOR ESTIN PECIFIC UPGRADES	MATING AVERAGE T	RAVEL SPEED ON
		r	ade Adjustment Factor	r, f _G
			Directional Flow Rates	
Grade (%)	Length of Grade (km)	0-300	> 300-600	> 600
≥ 3.0 < 3.5	0.4	0.81	1.00	1.00
	0.8	0.79	1.00	1.00
	1.2	0.77	1.00	1.00
	1.6	0.76	1.00	1.00
	2.4	0.75	0.99	1.00
	3.2	0.75	0.97	1.00
	4.8	0.75	0.95	0.97
	≥ 6.4	0.75	0.94	0.95
≥ 3.5 < 4.5	0.4	0.79	1.00	1.00
	0.8	0.76	1.00	1.00
	1.2	0.72	1.00	1.00
	1.6	0.69	0.93	1.00
	2.4	0.68	0.92	1.00
	3.2	0.66	0.91	1.00
	4.8	0.65	0.91	0.96
	≥ 6.4	0.65	0.90	0.96
≥ 4.5 < 5.5	0.4	0.75	1.00	1.00
	0.8	0.65	0.93	1.00
	1.2	0.60	0.89	1.00
	1.6	0.59	0.89	1.00
	2.4	0.57	0.86	0.99
	3.2	0.56	0.85	0.98
	4.8	0.56	0.84	0.97
	≥ 6.4	0.55	0.82	0.93
≥ 5.5 < 6.5	0.4	0.63	0.91	1.00
	0.8	0.57	0.85	0.99
	1.2	0.52	0.83	0.97
	1.6	0.51	0.79	0.97
	2.4	0.49	0.78	0.95
	3.2	0.48	0.78	0.94
	4.8	0.46	0.76	0.93
	≥ 6.4	0.45	0.76	0.93
≥ 6.5	0.4	0.59	0.86	0.98
	0.8	0.48	0.76	0.94
	1.2	0.44	0.74	0.91
	1.6	0.41	0.70	0.91
	2.4	0.40	0.67	0.91
	3.2	0.39	0.67	0.89
	4.8	0.39	0.66	0.88
	≥ 6.4	0.38	0.66	0.87

EXHIBIT	EXHIBIT 20-14. GRADE ADJUSTMENT FACTOR (fG) FOR ESTIMATING PERCENT TIME- SPENTFOLLOWING ON SPECIFIC UPGRADES					
		Gra	de Adjustment Factor	r, f _G		
		Range of D	irectional Flow Rates	s, v _d (pc/h)		
Grade (%)	Length of Grade (km)	0-300	> 300-600	> 600		
$\geq 3.0 < 3.5$	0.4	1.00	0.92	0.92		
	0.8	1.00	0.93	0.93		
	1.2	1.00	0.93	0.93		
	1.6	1.00	0.93	0.93		
	2.4	1.00	0.94	0.94		
	3.2	1.00	0.95	0.95		
	4.8	1.00	0.97	0.96		
	≥ 6.4	1.00	1.00	0.97		
≥ 3.5 < 4.5	0.4	1.00	0.94	0.92		
	0.8	1.00	0.97	0.96		
	1.2	1.00	0.97	0.96		
	1.6	1.00	0.97	0.97		
	2.4	1.00	0.97	0.97		
	3.2	1.00	0.98	0.98		
	4.8	1.00	1.00	1.00		
	≥ 6.4	1.00	1.00	1.00		
≥ 4.5 < 5.5	0.4	1.00	1.00	0.97		
	0.8	1.00	1.00	1.00		
	1.2	1.00	1.00	1.00		
	1.6	1.00	1.00	1.00		
	2.4	1.00	1.00	1.00		
	3.2	1.00	1.00	1.00		
	4.8	1.00	1.00	1.00		
	≥ 6.4	1.00	1.00	1.00		
≥ 5.5 < 6.5	0.4	1.00	1.00	1.00		
	0.8	1.00	1.00	1.00		
	1.2	1.00	1.00	1.00		
	1.6	1.00	1.00	1.00		
	2.4	1.00	1.00	1.00		
	3.2	1.00	1.00	1.00		
	4.8	1.00	1.00	1.00		
	≥ 6.4	1.00	1.00	1.00		
≥ 6.5	0.4	1.00	1.00	1.00		
	0.8	1.00	1.00	1.00		
	1.2	1.00	1.00	1.00		
	1.6	1.00	1.00	1.00		
	2.4	1.00	1.00	1.00		
	3.2	1.00	1.00	1.00		
	4.8	1.00	1.00	1.00		
	≥ 6.4	1.00	1.00	1.00		

Г

EXHIBIT 20-15	. PASSENGER-CAR EQUIV	ALENTS FOR TRUCK SPECIFIC UPGRADES		AVERAGE SPEED ON	
		Passenger-Car Equivalent for Trucks, E_T			
		Range of I	Directional Flow Rate	s, v _d (pc/h)	
Grade (%)	Length of Grade (km)	0-300	> 300-600	> 600	
≥ 3.0 < 3.5	0.4	2.5	1.9	1.5	
	0.8	3.5	2.8	2.3	
	1.2	4.5	3.9	2.9	
	1.6	5.1	4.6	3.5	
	2.4	6.1	5.5	4.1	
	3.2	7.1	5.9	4.7	
	4.8	8.2	6.7	5.3	
	≥ 6.4	9.1	7.5	5.7	
≥ 3.5 < 4.5	0.4	3.6	2.4	1.9	
	0.8	5.4	4.6	3.4	
	1.2	6.4	6.6	4.6	
	1.6	7.7	6.9	5.9	
	2.4	9.4	8.3	7.1	
	3.2	10.2	9.6	8.1	
	4.8	11.3	11.0	8.9	
	≥ 6.4	12.3	11.9	9.7	
≥ 4.5 < 5.5	0.4	4.2	3.7	2.6	
	0.8	6.0	6.0	5.1	
	1.2	7.5	7.5	7.5	
	1.6	9.2	9.0	8.9	
	2.4	10.6	10.5	10.3	
	3.2	11.8	11.7	11.3	
	4.8	13.7	13.5	12.4	
	≥ 6.4	15.3	15.0	12.5	
≥ 5.5 < 6.5	0.4	4.7	4.1	3.5	
	0.8	7.2	7.2	7.2	
	1.2	9.1	9.1	9.1	
	1.6	10.3	10.3	10.2	
	2.4	11.9	11.8	11.7	
	3.2	12.8	12.7	12.6	
	4.8	14.4	14.3	14.2	
	≥ 6.4	15.4	15.2	15.0	
≥ 6.5	0.4	5.1	4.8	4.6	
	0.8	7.8	7.8	7.8	
	1.2	9.8	9.8	9.8	
	1.6	10.4	10.4	10.3	
	2.4	12.0	11.9	11.8	
	3.2	12.9	12.8	12.7	
	4.8	14.5	14.4	14.3	
	≥ 6.4	15.4	15.3	15.2	

EXHIBIT 20-16. PASSENGER-CAR EQUIVALENTS FOR TRUCKS AND RVS FOR ESTIMATING PERCENT TIME-SPENT-FOLLOWING ON SPECIFIC UPGRADES					
		Passenger	-Car Equivalent for	Trucks, Et	
		Range of Di	irectional Flow Rate	es, v _d (pc/h)	
Grade (%)	Length of Grade (km)	0-300	> 300-600	> 600	RVs, Er
≥ 3.0 < 3.5	0.4	1.0	1.0	1.0	1.0
	0.8	1.0	1.0	1.0	1.0
	1.2	1.0	1.0	1.0	1.0
	1.6	1.0	1.0	1.0	1.0
	2.4	1.0	1.0	1.0	1.0
	3.2	1.0	1.0	1.0	1.0
	4.8	1.4	1.0	1.0	1.0
	≥ 6.4	1.5	1.0	1.0	1.0
≥ 3.5 < 4.5	0.4	1.0	1.0	1.0	1.0
	0.8	1.0	1.0	1.0	1.0
	1.2	1.0	1.0	1.0	1.0
	1.6	1.0	1.0	1.0	1.0
	2.4	1.1	1.0	1.0	1.0
	3.2	1.4	1.0	1.0	1.0
	4.8	1.7	1.1	1.2	1.0
	≥ 6.4	2.0	1.5	1.4	1.0
≥ 4.5 < 5.5	0.4	1.0	1.0	1.0	1.0
	0.8	1.0	1.0	1.0	1.0
	1.2	1.0	1.0	1.0	1.0
	1.6	1.0	1.0	1.0	1.0
	2.4	1.1	1.2	1.2	1.0
	3.2	1.6	1.3	1.5	1.0
	4.8	2.3	1.9	1.7	1.0
	≥ 6.4	3.3	2.1	1.8	1.0
≥ 5.5 < 6.5	0.4	1.0	1.0	1.0	1.0
	0.8	1.0	1.0	1.0	1.0
	1.2	1.0	1.0	1.0	1.0
	1.6	1.0	1.2	1.2	1.0
	2.4	1.5	1.6	1.6	1.0
	3.2	1.9	1.9	1.8	1.0
	4.8	3.3	2.5	2.0	1.0
	≥ 6.4	4.3	3.1	2.0	1.0
≥ 6.5	0.4	1.0	1.0	1.0	1.0
	0.8	1.0	1.0	1.0	1.0
	1.2	1.0	1.0	1.3	1.0
	1.6	1.3	1.4	1.6	1.0
	2.4	2.1	2.0	2.0	1.0
	3.2	2.8	2.5	2.1	1.0
	4.8	4.0	3.1	2.2	1.0
	≥ 6.4	4.8	3.5	2.3	1.0

		N SPECIFIC UPGRADES Passenger-Car Equivalent for RVs, E _R			
			Directional Flow Rate		
Grade (%)	Length of Grade (km)	0-300	> 300-600	> 600	
≥ 3.0 < 3.5	0.4	1.1	1.0	1.0	
	0.8	1.2	1.0	1.0	
	1.2	1.2	1.0	1.0	
	1.6	1.3	1.0	1.0	
	2.4	1.4	1.0	1.0	
	3.2	1.4	1.0	1.0	
	4.8	1.5	1.0	1.0	
	≥ 6.4	1.5	1.0	1.0	
≥ 3.5 < 4.5	0.4	1.3	1.0	1.0	
	0.8	1.3	1.0	1.0	
	1.2	1.3	1.0	1.0	
	1.6	1.4	1.0	1.0	
	2.4	1.4	1.0	1.0	
	3.2	1.4	1.0	1.0	
	4.8	1.4	1.0	1.0	
	≥ 6.4	1.5	1.0	1.0	
≥ 4.5 < 5.5	0.4	1.5	1.0	1.0	
	0.8	1.5	1.0	1.0	
	1.2	1.5	1.0	1.0	
	1.6	1.5	1.0	1.0	
	2.4	1.5	1.0	1.0	
	3.2	1.5	1.0	1.0	
	4.8	1.6	1.0	1.0	
	≥ 6.4	1.6	1.0	1.0	
≥ 5.5 < 6.5	0.4	1.5	1.0	1.0	
	0.8	1.5	1.0	1.0	
	1.2	1.5	1.0	1.0	
	1.6	1.6	1.0	1.0	
	2.4	1.6	1.0	1.0	
	3.2	1.6	1.0	1.0	
	4.8	1.6	1.2	1.0	
	≥ 6.4	1.6	1.5	1.2	
≥ 6.5	0.4	1.6	1.0	1.0	
	0.8	1.6	1.0	1.0	
	1.2	1.6	1.0	1.0	
	1.6	1.6	1.0	1.0	
	2.4	1.6	1.0	1.0	
	3.2	1.6	1.0	1.0	
	4.8	1.6	1.3	1.3	
	≥ 6.4	1.6	1.5	1.4	

EXHIBIT 20-18. PASSENGER-CAR EQUIVALENTS FOR ESTIMATING THE EFFECT ON AVERAGE TRAVEL SPEED OF TRUCKS THAT OPERATE AT CRAWL SPEEDS ON LONG STEEP DOWNGRADES

	Passenger-Car Equivalent for Trucks at Crawl Speeds, E_{TC}		
Difference Between FFS	Range of Directional Flow Rates, vd (pc/h)		
and Truck Crawl Speed (km/h)	0-300	> 300-600	> 600
≤ 20	4.4	2.8	1.4
40	14.3	9.6	5.7
≥ 60	34.1	23.1	13.0