

FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

MODULE	GRAPHICS IT18X77
CAMPUS	AUCKLAND PARK CAMPUS (APK)
FSAO SSA	JULY - MEMO
DATE: 2020-07	SESSION: Morning
ASSESSOR(S):	MR. A. MAGANLAL
MODERATOR:	DR. D VOGTS (NMU)
DURATION: 120 MINUTES	MARKS: 100
Please read the following instructions carefully:	

- 1. Answer **all** the questions.
- 2. Answer questions in order.
- 3. Answer only in the answer sheets provided.
- 4. Use diagrams where necessary to assist in your explanations.
- 5. Non-programmable calculators are allowed.
- 6. Round final answers to three decimal places.
- 7. Write *cleanly* and *legibly*.
- 8. This paper contains **6** question(s).
- 9. This paper consists of **7** page(s).

QUESTION 1: Rotation Calculation

Answer only one part. Either Matrix or Quaternion

(a) Matrix

Construct a matrix to rotate 347° (clockwise) around the axis specified by

$$(-11, 6, 22) \rightarrow (-3, 0, 17)$$

Rotate the point (22, 0, 3) around this axis.

Solution:

R

The direction vector around which rotation occurs is (-3, 0, 17) - (-11, 6, 22) = (8, -6, -5). Normalizing this vector gives $\mathbf{u} = (0.715542, -0.536656, -0.447214) \checkmark \checkmark$. We need to translate the point so that (-11, 6, 22) is transformed to the origin, rotate and then translate back again. Our final matrix is

$$M = T(\mathbf{o})R_{\mathbf{u}}(347^{\circ})T(-\mathbf{o})\checkmark\checkmark$$

where $\mathbf{o} = (-11, 6, 22)$. The matrices are as follows:

$$T(\mathbf{o}) = \begin{pmatrix} 1 & 0 & 0 & -11 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & 22 \\ 0 & 0 & 0 & 1 \end{pmatrix} \checkmark \qquad T(-\mathbf{o}) = \begin{pmatrix} 1 & 0 & 0 & 11 \\ 0 & 1 & 0 & -6 \\ 0 & 0 & 1 & -22 \\ 0 & 0 & 0 & 1 \end{pmatrix} \checkmark$$
$$\mathbf{u}(347^{\circ}) = \begin{pmatrix} 0.987493 & -0.110443 & 0.11252 & 0 \\ 0.987493 & -0.110443 & 0.11252 & 0 \\ 0.0907593 & 0.981752 & 0.167113 & 0 \\ -0.128923 & -0.154811 & 0.979496 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \checkmark$$

We now simply multiply to get M:

$$M = T(\mathbf{0})R_{\mathbf{u}}(347^{\circ})T(-\mathbf{0})$$

$$T(\mathbf{0})R_{\mathbf{u}}(347^{\circ}) = \begin{pmatrix} 1 & 0 & 0 & -11 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & 22 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0.987493 & -0.110443 & 0.11252 & 0 \\ 0.0907593 & 0.981752 & 0.167113 & 0 \\ -0.128923 & -0.154811 & 0.979496 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0.987493 & -0.110443 & 0.11252 & -11 \\ 0.0907593 & 0.981752 & 0.167113 & 6 \\ -0.128923 & -0.154811 & 0.979496 & 22 \\ 0 & 0 & 0 & 1 \end{pmatrix} \checkmark$$

$$M = \begin{pmatrix} 0.987493 & -0.110443 & 0.11252 & -11 \\ 0.0907593 & 0.981752 & 0.167113 & 6 \\ -0.128923 & -0.154811 & 0.979496 & 22 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 11 \\ 0 & 1 & 0 & -6 \\ 0 & 0 & 1 & -22 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0.987493 & -0.110443 & 0.11252 & -11 \\ 0.987493 & -0.110443 & 0.11252 & -1195036 \\ 0.0907593 & 0.981752 & 0.167113 & -2.56864 \\ -0.128923 & -0.154811 & 0.979496 & -0.038202 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

We now rotate $\mathbf{p} = (22, 0, 3)$ around this axis simply by multiplying by M:

 $\mathbf{p}' = \mathsf{M}\mathbf{p}\checkmark$ $= \begin{pmatrix} 0.987493 & -0.110443 & 0.11252 & -1.95036\\ 0.0907593 & 0.981752 & 0.167113 & -2.56864\\ -0.128923 & -0.154811 & 0.979496 & -0.038202\\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 22\\ 0\\ 3\\ 1 \end{pmatrix} = \begin{pmatrix} 20.112\\ -0.0706012\\ 0.0639805\\ 1 \end{pmatrix}$

Thus we obtain the point (20.112, −0.0706012, 0.0639805) √ √ √.

(b) Quaternion

Construct a quaternion to rotate 347° (clockwise) about the axis (8, -6, -5). Use the quaternion to rotate (33, -6, -19) around this axis.

Solution:

Let $\mathbf{p} = (33, -6, -19, 1) = (\mathbf{p}_{v}, \mathbf{p}_{w})$. To rotate 347° around (8, -6, -5) we create the quaternion $\mathbf{q} = (\mathbf{q}_{v}, \mathbf{q}_{w}) = (\sin(173.5^{\circ})\mathbf{u}, \cos(173.5^{\circ}))\sqrt{}$. The normalized axis $\mathbf{u} = (0.715542, -0.536656, -0.447214)\sqrt{}\sqrt{}$ gives $\mathbf{q} = (0.0810016i - 0.0607512j - 0.050626k - 0.993572)\sqrt{}$. This gives $\mathbf{q}^{*} = (-0.0810016i + 0.0607512j + 0.050626k - 0.993572)\sqrt{}$. To perform the rotation we calculate:

$$qpq^* \checkmark \checkmark = (0.0810016i - 0.0607512j - 0.050626k - 0.993572)(33i - 6j - 19k + 1)q^*$$

$$= ((-32.7879i - 1.67066j + 2.00479k - 2.67305)+$$

$$(-0.303756i + 5.96143j - 0.48601k - 0.364507)+$$

$$(1.15427i + 1.53903j + 18.8779k - 0.961894)+$$

$$(0.0810016i - 0.0607512j - 0.050626k - 0.993572))q^* \checkmark \checkmark$$

$$= (-31.8564i + 5.76905j + 20.346k - 4.99303)q^*$$

$$= ((0.404443i - 1.64806j + 0.467303k - 2.58042)+$$

$$(-1.23605i - 0.303332j - 1.93531k - 0.350477)+$$

$$(0.292064i + 1.61276j - 0.252777k - 1.03004)+$$

$$(31.6516i - 5.73197j - 20.2152k + 4.96093))\checkmark \checkmark \checkmark$$

Thus we obtain the point (31.112, −6.0706, −21.936) **√ √ .**

QUESTION 2: Lighting Equation

Write down the Phong lighting equation for a single colour light source and object (black and white model). Now calculate the viewed intensity of a point on an object given the following attributes:

- The object is not emissive at all.
- The ambient light intensity is 0.214.
- The object has an ambient coefficient of 0.936.
- The object has a diffuse reflection coefficient of 0.745.
- The object has a specular reflection coefficient of 0.996.
- The shininess (specular highlight) factor is 3.
- The intensity of the incoming light (both specular and diffuse) is 0.401.
- The point we are considering is (4, -11, -6).
- The normal at the surface is (-0.624242, 0.780303, 0.0380749).
- The light is positioned at (1, -8, 12).
- The viewer is positioned at (-6, 2, 16).

Solution:

$$= \mathbf{I}_{e} + \rho_{a}\mathbf{I}_{a}^{\text{in}} + \rho_{d}\mathbf{I}_{d}^{\text{in}}(\mathbf{I} \cdot \mathbf{n}) + \rho_{s}\mathbf{I}_{s}^{\text{in}}(\mathbf{v} \cdot \mathbf{r})^{f} \checkmark \checkmark$$

We note that

•
$$I_e = 0\sqrt{\frac{1}{5}}$$

- $I_a = 0.214 \times 0.936 = 0.200304 \checkmark$ $I_d^{in} = I_s^{in} = 0.401 \checkmark \frac{1}{2} \checkmark \frac{1}{2}$

• $\rho_{\rm S} = 0.996 \sqrt{\frac{1}{2}}$ • $f = 3\sqrt{\frac{1}{5}}$

• $\rho_{\rm d} = 0.745 \sqrt{1/3}$

- n = (-0.624242, 0.780303, 0.0380749) (given)
- $\mathbf{h} = (-0.624242, 0.780303, 0.0380749)$ (given) $\mathbf{I} = \frac{(1,-8,12)-(4,-11,-6)}{\|(1,-8,12)-(4,-11,-6)\|} = \frac{1}{18.4932}(-3,3,18)$ $\mathbf{I} = (-0.162221, 0.162221, 0.973329) \checkmark \checkmark (only (\checkmark) if wrong answer)$ $\mathbf{v} = \frac{(-6,2,16)-(4,-11,-6)}{\|(-6,2,16)-(4,-11,-6)\|} = \frac{1}{27.4408}(-10,13,22)$
- $\mathbf{v} = (-0.36442, 0.473746, 0.801725) \sqrt{\sqrt{(only(\sqrt{)} if wrong answer)}}$
- $r = 2(n \cdot l)n l$
- r = (-0.16851, 0.251193, -0.953156) √ √ (only (√) if wrong answer)
- $\mathbf{v} \cdot \mathbf{r} = -0.583758$, so the viewer is opposite to specular reflection.

The lighting equation is then

- $I = 0 + 0.200304 + 0.401 \times 0.745 \times (\mathbf{n} \cdot \mathbf{l}) + 0$
 - = 0.200304 + 0.298745 × 0.264907
 - = 0.200304 + 0.0791395
 - = 0.279444

Total: 15

QUESTION 3: Proof

(a) **Provide** the *formula* for a *Bézier curve of degree three (3)*

Solution:

A Bézier curve of degree three is given by

$$\mathbf{q}(\mathbf{u}) = \sum_{k=0}^{3} \checkmark \mathsf{B}_{k}(\mathbf{u}) \checkmark \mathbf{p}_{k},$$

where \boldsymbol{p}_k are the control points and $\mathsf{B}_k(u)$ are the Bernstein polynomials

$$B_k(u) = \binom{3}{k} \checkmark u^k \checkmark (1-u)^{3-k} \checkmark.$$

(b) **Show** that a *Bézier curve of degree three (3)* is affine invariant.

Solution:

Let A be an affine transform, ie. A**x** = L**x** + **t** (where L is a linear transform). $\checkmark \checkmark$ We must show that A $\sum_{k=0}^{3} B_k(u)\mathbf{p}_k = \sum_{k=0}^{3} B_k(u)A\mathbf{p}_k$.

$$A \sum_{k=0}^{3} B_{k}(u)\mathbf{p}_{k} = L \sum_{k=0}^{3} B_{k}(u)\mathbf{p}_{k} + \mathbf{t} \checkmark$$

$$= \sum_{k=0}^{3} B_{k}(u)L\mathbf{p}_{k} + \mathbf{t} \checkmark \text{(Property of linear transformations)} \checkmark$$

$$= \sum_{k=0}^{3} B_{k}(u)L\mathbf{p}_{k} + \sum_{k=0}^{3} B_{k}(u)\mathbf{t} \checkmark \checkmark \text{(Property of the basis functions)} \checkmark$$

$$= \sum_{k=0}^{3} (B_{k}(u)(L\mathbf{p}_{k} + \mathbf{t})) \checkmark$$

$$= \sum_{k=0}^{3} (B_{k}(u)A\mathbf{p}_{k}) \checkmark$$

Total: 15

[10]

[05]

QUESTION 4: Ray Tracing Intersection

(a) Describe how to calculate the intersection point between a ray described by **o** + t**d** (where **[08] d** is a unit vector) and a sphere described by $(x - c_x)^2 + (y - c_y)^2 + (z - c_z)^2 = r^2$.

Solution:

Let $\mathbf{p} = (x, y, z)$ and $\mathbf{c} = (c_x, c_y, c_z)$. If we use the implicit formula

for the sphere and express any point **p** on the ray as **o** + t**d** then we can use

$$f(o + td) = ||o + td - c|| - r = 0\sqrt{}$$

We simplify

$$f(\mathbf{o} + t\mathbf{d}) = ||\mathbf{o} + t\mathbf{d} - \mathbf{c}|| - r = 0$$
$$||\mathbf{o} + t\mathbf{d} - \mathbf{c}|| = r$$
$$(\mathbf{o} + t\mathbf{d} - \mathbf{c}) \cdot (\mathbf{o} + t\mathbf{d} - \mathbf{c}) = r^{2}$$
$$t^{2}(\mathbf{d} \cdot \mathbf{d}) + 2t(\mathbf{d} \cdot (\mathbf{o} - \mathbf{c})) + (\mathbf{o} - \mathbf{c}) \cdot (\mathbf{o} - \mathbf{c}) - r^{2} = 0 \checkmark \checkmark$$

If ${f d}$ is normalized we can simplify even further. We can use the standard formula

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \checkmark \checkmark$$

To calculate t and thus the point of intersection (using $\mathbf{o}+t\mathbf{d}$), where $\mathbf{a} = \mathbf{d}\cdot\mathbf{d}$, $\mathbf{b} = 2\mathbf{d}\cdot(\mathbf{o}-\mathbf{c})$ and $\mathbf{c} = (\mathbf{o} - \mathbf{c}) \cdot (\mathbf{o} - \mathbf{c}) - \mathbf{r}^2$. If $\mathbf{b}^2 - 4\mathbf{ac} < 0$ then there is no intersection. Since there are usually two values of t that satisfy the equation, take the smallest, positive value of t as the intersection point.

(b) How will you determine if the ray is entering or exiting the sphere?

Solution:

If the dot product between the ray direction and surface normal is greater than zero, then the ray is exiting the surface. \checkmark Otherwise the ray is entering the sphere. \checkmark

Total: 10

[02]

QUESTION 5: Rasterisation vs Ray Tracing

Discuss how *forward shading rasterisation* and *naive recursive ray tracing differ* in terms of application of realistic lighting. Your discussion should include how *visibility* is calculated, how reflection/refraction is computed and the relative speed of the technique.

Solution:

Students answer should be in the form of a discussion of the following table.

Criteria	Rasterisation	Ray Tracing
Visibility	Z-Buffer or Painters Algorithm 🗸 🗸	Various Intersection Tests 🗸 🗸
Lighting models	Direct lighting 🗸	Direct lighting 🗸
Shadows	Need shadow maps 🗸 🗸	Shadow rays can create basic shad-
		ows√√
Reflection	Need reflection renders $\checkmark \checkmark$	Reflection rays can be generated for
		reflections
Refraction	Need refraction renders $\checkmark \checkmark$	Refraction rays can be generated for
		refractions
Speed	Faster with GPU acceleration \checkmark \checkmark	Naive - Depends on number of ob-
		jects√√

Total: 20

[05]

QUESTION 6: Application

A still image of an *theater stage* is to be rendered. The stage is lit by an array of spot lights, directly above the stage. Rasterisation was selected as a method for rendering the scene. Answer the questions that follow:

(a) **Provide** a *definition* for *global lighting model*.

Solution:

Students answer should include the fact that global lighting takes into account all paths of light, from direct \checkmark to indirect \checkmark . Direct lighting comes from the light source without interacting with the scene \checkmark . Indirect lighting is the result of light interacting with the scene in some way, usually diffuse/specular reflection or refraction (can be others but was not taught in the course) \checkmark .

(b) **Discuss** how *radiosity* works. Your discussion must include details of patches, form [15] factors and methods for solving radiosity as well as how radiosity can be integrated into the rasterisation process.

Solution:

Discussion should include details about patches $\checkmark \checkmark$ and form factors $\checkmark \checkmark$ (including methods for calculating them, hemicube method $\checkmark \checkmark \checkmark$), solving radiosity $\checkmark \checkmark \checkmark$ using either the Jacobi method, Gauss-Seidel Iteration or shooting method. Rendering using Gouraud shading $\checkmark \checkmark$ or radiosity per pixel $\checkmark \checkmark$.

(c) Discuss why radiosity should be used to render the scene as opposed to photon map- [05] ping.

Solution:

Discussion should include details about the scene being mostly lit by diffuse reflections $\sqrt{4}$. Radiosity can only handle diffuse reflection efficiently $\sqrt{2}$. Photon mapping can handle more complex scenes but is not required for the current application $\sqrt{4}$.

Total: 25

~~ THE END ~~