

FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

MODULE	GRAPHICS IT18X77
CAMPUS	
FSAO SSA	AUCKLAND PARK CAMPUS (APK)
DATE: 2020-07	
ASSESSOR(S):	SESSION: Morning
MODERATOR:	MR. A. MAGANLAL
DURATION: 120 MINUTES	DR. D VOGTS (NMU)

Please read the following instructions carefully:

1. Answer all the questions.
2. Answer questions in order.
3. Answer only in the answer sheets provided.
4. Use diagrams where necessary to assist in your explanations.
5. Non-programmable calculators are allowed.
6. Round final answers to three decimal places.
7. Write cleanly and legibly.
8. This paper contains 6 question(s).
9. This paper consists of $\mathbf{2}$ page(s).

QUESTION 1: Rotation Calculation

Answer only one part. Either Matrix or Quaternion
(a) Matrix

Construct a matrix to rotate 347° (clockwise) around the axis specified by

$$
(-11,6,22) \quad \rightarrow \quad(-3,0,17)
$$

Rotate the point $(22,0,3)$ around this axis.
(b) Quaternion

Construct a quaternion to rotate 347° (clockwise) about the axis ($8,-6,-5$).
Use the quaternion to rotate $(33,-6,-19)$ around this axis.

QUESTION 2: Lighting Equation

Write down the Phong lighting equation for a single colour light source and object (black and white model). Now calculate the viewed intensity of a point on an object given the following attributes:

- The object is not emissive at all.
- The ambient light intensity is 0.214 .
- The object has an ambient coefficient of 0.936 .
- The object has a diffuse reflection coefficient of 0.745.
- The object has a specular reflection coefficient of 0.996.
- The shininess (specular highlight) factor is 3.
- The intensity of the incoming light (both specular and diffuse) is 0.401.
- The point we are considering is $(4,-11,-6)$.
- The normal at the surface is ($-0.624242,0.780303,0.0380749$).
- The light is positioned at $(1,-8,12)$.
- The viewer is positioned at $(-6,2,16)$.

QUESTION 3: Proof

(a) Provide the formula for a Bézier curve of degree three (3)
(b) Show that a Bézier curve of degree three (3) is affine invariant.

QUESTION 4: Ray Tracing Intersection

(a) Describe how to calculate the intersection point between a ray described by $\mathbf{0}+$ td (where
d is a unit vector) and a sphere described by $\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right)^{2}+\left(z-c_{z}\right)^{2}=r^{2}$.
(b) How will you determine if the ray is entering or exiting the sphere?

QUESTION 5: Rasterisation vs Ray Tracing

Discuss how forward shading rasterisation and naive recursive ray tracing differ in terms of application of realistic lighting. Your discussion should include how visibility is calculated, how reflection/refraction is computed and the relative speed of the technique.

QUESTION 6: Application

A still image of an theater stage is to be rendered. The stage is lit by an array of spot lights, directly above the stage. Rasterisation was selected as a method for rendering the scene. Answer the questions that follow:
(a) Provide a definition for global lighting model.
(b) Discuss how radiosity works. Your discussion must include details of patches, form
factors and methods for solving radiosity as well as how radiosity can be integrated into the rasterisation process.
(c) Discuss why radiosity should be used to render the scene as opposed to photon mapping.

