FACULTY OF SCIENCE

DEPARTMENT OF BIOCHEMISTRY (APK)

MODULE: BIC2A01: BIOCHEMICAL TECHNIQUES AND ENZYMOLOGY

SPECIAL SSA EXAMINATION

EXAMINER 1 (Section A) EXAMINER 2 (Section B)

INTERNAL MODERATORS

TIME 3 HOURS

NUMBER OF PAGES: 7 PAGES

INSTRUCTIONS: ANSWER ALL THE QUESTIONS. DO NOT USE RED INK. PLEASE HAND IN YOUR QUESTION PAPER WITH YOUR EXAM BOOK.

REQUIREMENTS: ANSWER ALL THE QUESTIONS IN YOUR EXAM BOOKS PROVIDED ANSWER SECTION A (TECHNIQUES) AND SECTION B (ENZYMOLOGY) IN TWO SEPARATE EXAM BOOKS

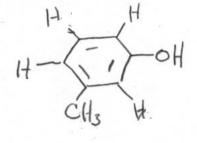
<u>Additional Information</u> : pKa Values	
Carboxyl group Amino group Side Chains	: 2.2 : 9.4 : Tyr (10.46); Cys (8.37); Lys (10.54); Arg (12.48); His (6.04); Asp (3.90); Glu (4.07)

SECTION A [50]

Prof R Motadi Dr M Choene

Dr MBC Simelane

MARKS 100


QUESTION 1

[10]

As a Drug discovery technician at a pharmaceutical company that produce Insulin specifically raised from pig. You are asked to purify insulin for pharmaceutical purposes that will yield 99.5% purity. Which technique will you chose? Discuss using the principle of the technique the procedure you will follow.

2

QUESTION 2

a)	Provide the C-NMR and H-NMR spectrum of the compound having a molecular formula of		
	C7H8O that is consistent with the following above structure.	[8]	
b)	State the advantages of X-ray Crystallogram over NMR.	[2]	

QUESTION 3

a)	Differentiate between Paper and Thin layer chromatography.	[3]
b)	If you are given 4 amino acids (Ser -weak polar, Met Strong polar, phy neutral and pro-	
	semi-neutral). If your mobile phase is polar draw the migration of the amino acid.	[5]
c)	What is Rf value and what does it imply or indicate?	[2]

QUESTION 4

[10]

[10]

Draw all possible spectrum of 1-propanol from Mass spectrophotometry.

QUESTION 5

a) Give a brief explanation of how the tertiary structure of a protein is formed through folding.

SECTION B [50]

QUESTION 1

[10]

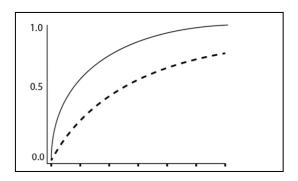
Multiple choice

1. The following is an example of a:

- a) ping pong bi-substrate reaction
- b) group transfer reaction
- c) secondary reaction
- d) random bi-substrate reaction
- e) ordered bi-substrate reaction
- 2. Coenzymes:
- a) The non-protein part of enzymes
- **b**) Usually vitamin derivatives
- c) Termed prosthetic group if bonded tight to their enzymes
- d) All of the above are correct

- 3. In an enzyme catalyzed reaction, ___ provides information on ___ and ___ provides information on ___.
- a) K_M , chemical step, V_{MAX} , substrate binding.

- **b**) K_D, substrate binding, k_{CAT}, chemical step.
- c) K_M , substrate binding, V_{MAX} , chemical step.
- **d**) k_{CAT} , substrate V_{MAX} , chemical step.
- 4. Which of the following is true of enzymes?
- I. They increase the rate of reaction by stabilizing the transition state
- II. They raise activation energy to shift the equilibrium to favor the products
- III. They lower activation energy by altering the products of a reaction
- a) I only
- **b**) I & III
- **c**) I & II
- d) III only
- 5. Which of the following statements is false with respect to an enzyme's ability to catalyze a reaction?
- a) An enzyme provides a reaction surface and a suitable environment for the reaction to take place
- **b**) An enzyme binds reactants such that they are positioned correctly and can attain their transition-state configurations
- c) An enzyme allows the reaction to go through a less stable transition state than would normally be the case
- d) An enzyme can weaken bonds in reactants through the binding process
- 6. Which of the following statements is true of competitive inhibitors?
- a) Km is unchanged
- **b**) Vmax is unchanged
- c) Cannot be overcome by increasing substrate concentration
- d) Binds to a site other than the active site
- 7. For serine proteases, the first step of the mechanism in which the serine side chain attacks the scissile peptide bond is best described as an example of....

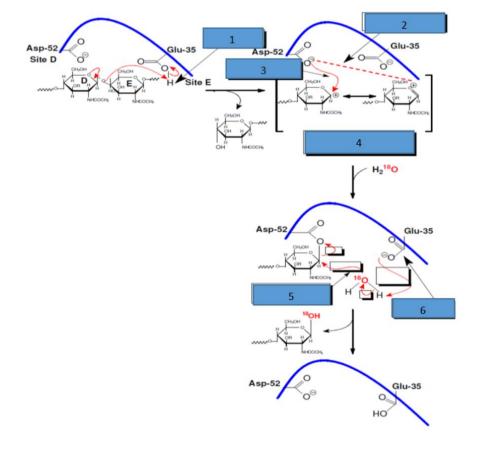

- a) general acid catalysis
- **b**) electrophilic catalysis
- c) electrostatic catalysis
- d) covalent catalysis
- 8. When the rate of a reaction does not depend on the concentration of reactant molecules, the order of reaction is:
- **a**) 1
- b) Zero
- **c**) 2
- **d**) 3
- 9. Enzyme activity can be regulated by the following mechanism:
- a) allosteric control
- **b**) covalent modification
- c) feedback inhibition
- **d**) all of the above
- 10. To overcome the difficulties of accurately determining the Km with a Michaelis-Menten plot, data can be reordered into a ______
- a) Direct linear
- **b**) Scatchard
- c) Hill
- d) Direct linear and Hill

QUESTION 2

- [13]
- The activity of enzymes involved in regulation/rate-limiting steps and other essential processes can be controlled in various ways. Discuss these mechanisms by using the specific given examples to illustrate each of your answers:
 - a) Inactive precursors/zymogens, e.g. trypsin [3]
 - b) Covalent modification and allosteric regulation, e.g. glycogen phosphorylase [10]

QUESTION 3

- The lineweaver-Burk plot is a linearization of the Michaelis Menten equation. Derive the Lineweaver-Burk Relationship starting from Michaelis Menten equation. [4]
- You are studying two enzymes X (solid line) and Y (dotted line) that utilize the same substrate and collect the following data:
 - a) Estimate the Km of enzyme X [1]
 - b) Which enzyme has a higher affinity for the enzyme? [2]


3. The following kinetic data are recorded for equal amounts of a preparation of an enzyme in the absence and presence of an inhibitor:

Substrate conc. [S] uM	No inhibitor Vo (uM/s)	Inhibitor Vo (uM/s)
7	0.6	0.4
11	0.83	0.6
17	0.94	0.69
22	0.97	0.75
28	1.05	0.9

a) Draw the Lineweaver-Burke plots and determine the Vmax and Km for both graphs.

[10]

- b) What type of inhibition can be observed? Motivate your answer. [2]
- c) Where on the enzyme molecule, relative to the active site, does the inhibitor likely bind? Explain.
 - [1]
- d) What effect would increasing substrate concentration have on the above inhibition, if any?[1]

a) Complete the boxes numbered 1-6 based on lysozyme mechanism. [6]