
1 - 8 

 

UNIVERSITY OF JOHANNESBURG 

FACULTY OF SCIENCE 

 

HONOURS (Computer Science / IT) APK CAMPUS 

 

IT18X17 

FUNCTIONAL PROGRAMMING 

 

   EXAMINATION EQUIVALENT ONLINE ASSESSMENT 2020 

PAPER B 

MEMORANDUM 

2020–06 

 

EXAMINER  Prof. DA Coulter  

EXTERNAL MODERATOR  Prof. B van der Merwe 

(SUN) 

 

TIME  

(EXCLUDING SUBMISSION) 

2 HOURS MARKS 100 

 

Please read the following instructions carefully 

1. You must complete this assignment yourself within the prescribed time limits. 

2. You are bound by all university regulations please special note of those regarding 

assessment, plagiarism, and ethical conduct. 

3. You may refer to the lectures, notes, official Haskell wiki, prescribed textbook, and 

any web resources directly linked to from this document during the assessment. You 

may not directly use any code from any source.  

4. You must complete and submit the “Honesty Declaration : Online Assessment” 

document along with your submission to EVE. No submissions without an 

accompanying declaration will be marked. 

5. Your code together with the declaration must be submitted in a zip archive named in 

the following format. 

STUDENTNUMBER_SURNAME_INITIALS_SUBJECTCODE_ASSESSMENT 

e.g. 202012345_COULTER_DA_IT18X17_EXAM.zip 

6. Additional time for submission is allowed for as per the posted deadlines on EVE. If 

you are experiencing technical difficulties related to submission please contact me as 

soon as possible. 

7. No communication concerning this test is permissible during the assessment session 

except with Academy staff members. I am available via email (dcoulter@uj.ac.za) and 

on the “Prof Coulter - Postgraduate Matters” Discord server throughout the 

assessment. 

8. This paper consists of 4 pages including the cover page 

 

  

mailto:dcoulter@uj.ac.za


2 - 8 

 

 

Iconic combinations 

 

The Utopian Artisanal Electronic Entertainment Company and Heavy Industrial Concern is 

developing a retro style role playing game using fixed sized graphical assets of 128x128 pixels. 

There has been a recent pivot to adopting a functional programming style for their entire content 

production toolchain. You have been tasked with creating a tool which will combine images using 

a chroma-keying based approached to handle transparencies. Consider the combination of the 

following three images. 

 

 

 

 
Art sourced from the liberated pixel cup under an open license by attribution: Zabin, Daneeklu, Jetrel, Hyptosis, Redshrike, Bertram. 

 

 

  

Data format 

 

• An image is represented as a grid / lattice of pixels. Pixels are represented as a 3-tuple of 

integers in the range 0 – 255 as per the RGB colour model: 

https://en.wikipedia.org/wiki/RGB_color_model  

• Each cell in the grid should be uniquely and invariantly associated with a pair of 

coordinates reflecting their position within the grid.  

• The RGB colour for magenta (R: 255, G: 0, B: 255) is special and represents transparency 

as per the chroma keying approach: https://en.wikipedia.org/wiki/Chroma_key  

• All data provided to you is in the form of 128 x 128 pixel images. Images do store their 

dimensions and the merge operation is only defined on identically sized images. 

 

Operations 

• Merge: 

o When two images are merged their pixels a with corresponding coordinates are 

merged. This is done by averaging their colour components unless one of the 

operands is magenta. 

• Replace: 

o All occurrences of one colour in an image are replaced with another. 

• Greyscale 

o All pixels in an image are set to grey by setting each colour component to the 

average value of all three colour components. 

• getColourCoords  

o All the coordinates containing a specified colour are returned. 

 

Visualisation  

• The final state of the heat map must be output as an image in the Portable Pixel Map 

(PPM) format (see the Input and Output section of the marksheet for more details). 

• Grayscale images may be output using either the P3 or P2 format at your discretion.  

 

 

https://en.wikipedia.org/wiki/RGB_color_model
https://en.wikipedia.org/wiki/Chroma_key


3 - 8 

Contextual Values and Types 

• Consider each cell as a wrapper around its colour within the computational context of 

having a location. 

• Create your grid cell type so that it conforms to the Functor typeclass 

• Ensure that your grid cell conforms to the Functor rules. 

• Bonus: 

o Extend your grid cell so that it implements the Applicative Functor typeclass. 

o Do your images meet the requirement for potentially being Monoids? If so, 

describe in a comment why this either is or is not the case. 

 

 

You will need to create a system in the Haskell language which reads in the three images and 

associated paramaters, generates, and then outputs the resulting image in the PPM format. Make 

use of as wide a variety of topics / techniques as you can within the confines of the problem. 

 

Each of the following sub-questions can be answered independently. For example, if you are 

struggling with input then you can hardcode the values and work on subsequent sub-questions in 

the interim. Place each sub-question’s code into separate .hs files. 

a) Data structures 

You have been provided with a human-readable, serialized instance of a data 

structure defining the configuration of such a simulation: 

• Name: TileSet 

• Fields: 

1.  A pair representing the size of all of the images in pixels 

2. A list of lists of 3-tuples. Each list element represents an image, 

each 3-tuple represents the RGB values for each pixel. The 

coordinates of each pixel are not given but they are stored in 

row-major order. 

Additionally, you must create types and type aliases as you see fit to represent the 

elements of your problem domain. 

[20] 

b) Input and Output 

You must write a function / set of functions which will read an instance of the 

parameters from a specified file as well as save your result in the PPM format. 

PPM is a text-based image format with the following structure: 

 
P3 

NUM_COLS NUM_ROWS 

255 

RED GREEN BLUE RED GREEN BLUE …  

. 

. 

. 

RED GREEN BLUE RED GREEN BLUE …  

 

The first line indicates that this will be a colour image (P1 is black and white while 

P2 is greyscale). The second line indicates the image dimensions. The third line 

indicates the maximum value of any colour component. The remainder of the 

image is simply the red, green, and blue colour component values for each pixel 

given in sequence. 

 

 

 

 

[20] 



4 - 8 

For example, a 5x4 yellow (255, 255, 0) image would look as follows: 

 
P3 

5 4 

255 

255 255 0 255 255 0 255 255 0 255 255 0 255 255 0 

255 255 0 255 255 0 255 255 0 255 255 0 255 255 0 

255 255 0 255 255 0 255 255 0 255 255 0 255 255 0 

255 255 0 255 255 0 255 255 0 255 255 0 255 255 0 

255 255 0 255 255 0 255 255 0 255 255 0 255 255 0 

 

For more information see: https://en.wikipedia.org/wiki/Netpbm  

 

The file extension should be .ppm. You have been provided with the GNU 

Image Manipulation Program (GIMP) which is capable of displaying PPM 

images. 

 

c) Processing 

Although the exact problem decomposition is up to you the following aspects are 

important: 

• Creation of images 

• Implementation of the operations 

• Applying the per-image and per-pixel operations 

• Conversion to the PPM format 

[20] 

d) Language Features Used 

This section of the marksheet is not meant to be prescriptive. Marks are awarded 

for language features used correctly in pursuit of the solution of the problem. 

[20] 

e) Contextual Values and Types 

• Implementation of the Functor typeclass 

• Implementation of functions using the Functor wrapper 

• Mapping of a function via the typeclass 

• Demonstrating compliance with the Functor laws 

• Bonus (5 marks) 

o Extending the contextual type to an Applicative Functor 

o Discussing the adherence to the properties of a Monoid 

[20] 

 

https://en.wikipedia.org/wiki/Netpbm


5 - 8 

 



6 - 8 

 

 



7 - 8 

 
 

 
 



8 - 8 

 
 

 


