
1 - 9

UNIVERSITY OF JOHANNESBURG

FACULTY OF SCIENCE

HONOURS (Computer Science / IT) APK CAMPUS

IT18X17

FUNCTIONAL PROGRAMMING

 EXAMINATION EQUIVALENT ONLINE ASSESSMENT 2020

PAPER A

MEMORANDUM

2020–06

EXAMINER Prof. DA Coulter

EXTERNAL MODERATOR Prof. B van der Merwe

(SUN)

TIME

(EXCLUDING SUBMISSION)

2 HOURS MARKS 100

Please read the following instructions carefully

1. You must complete this assignment yourself within the prescribed time limits.

2. You are bound by all university regulations please special note of those regarding

assessment, plagiarism, and ethical conduct.

3. You may refer to the lectures, notes, official Haskell wiki, prescribed textbook, and

any web resources directly linked to from this document during the assessment. You

may not directly use any code from any source.

4. You must complete and submit the “Honesty Declaration : Online Assessment”

document along with your submission to EVE. No submissions without an

accompanying declaration will be marked.

5. Your code together with the declaration must be submitted in a zip archive named in

the following format.

STUDENTNUMBER_SURNAME_INITIALS_SUBJECTCODE_ASSESSMENT

e.g. 202012345_COULTER_DA_IT18X17_EXAM.zip

6. Additional time for submission is allowed for as per the posted deadlines on EVE. If

you are experiencing technical difficulties related to submission please contact me as

soon as possible.

7. No communication concerning this test is permissible during the assessment session

except with Academy staff members. I am available via email (dcoulter@uj.ac.za) and

on the “Prof Coulter - Postgraduate Matters” Discord server throughout the

assessment.

8. This paper consists of 5 pages including the cover page

mailto:dcoulter@uj.ac.za

2 - 9

Mapping the HeatMap

You will need to develop a software system in the Haskell Programming Language which

implements a very simple simulation of the diffusion of heat (note the actual heat transfer

equations used by physicists and engineers are far more complicated). You will need to create

the required data types using only the functionality available as part of the core Haskell

libraries (no third-party code may be used).

Simulation setup

• The simulation will take the form of applying transformations to a numerical grid /

lattice of values.

• Each cell in the grid should be uniquely and invariantly associated with a pair of

coordinates reflecting their position within the grid.

• The value at each cell in the grid represents the amount of heat at that location (this

can be a real value in the range [0.0, 1.0] or natural number up to some maximum as

you see fit).

• Each value in the grid is initially set to some uniform value such as zero except for a

set of hotspot cells which are set to the maximum value you have chosen.

• Every cell is uniquely and invariantly associated with a set of Moore neighbours (i.e.

adjacent and diagonals cells) as illustrated below from the point of view of an interior

cell. You may handle edge cells by either reducing the size of their neighbourhood or

wrapping around as you see fit.

3 - 9

Update Rules

• At every iteration of the simulation each cell’s value is set to contain the average of its

neighbours from the previous iteration.

Visualisation

• The final state of the heat map must be output as an image in the Portable Pixel Map

(PPM) format (see the Input and Output section of the marksheet for more details).

• You must create an appropriate set of functions for translating the heat map’s intensity

values to a visual representation. You may elect to simply translate the intensity value

to a grayscale value (using the P2 variant of the format) or to an RGB Colour (using

the P3 variant). Colour will be more difficult, but the extra effort will be rewarded.

• Bonus:

o In order to convert from an intensity value to an RGB colour we will actually

assume that the colour is in HSV (Hue, Saturation, Value) format but keep the

saturation and value amounts set at one. The HSV Colour model is cyclical so,

in this case, the H value ranges from 0 to 360. Also note that because of this

the colours at 0 are close to the colours at 360 (consider this when choosing an

appropriate value for the initialisation of the heat map).

o Hint the improved mod’ function from Data.Fixed operates better with

real values.

o The formula for conversion from HSV to RGB is given below:

sourced from: https://www.rapidtables.com/convert/color/hsv-to-rgb.html

Contextual Values and Types

• Consider your heat map as a wrapper around its cells in some computational context.

• Create your heat map so that it conforms to the Functor typeclass

• Ensure that your heat map conforms to the Functor rules.

• In physics heat death occurs when all energy in a closed system (such as your

simulation and the possibly the universe) is evenly distributed so no work can be done.

Create a heat death function which sets every cell’s value in your heat map to the same

value. Apply this function by mapping it onto every cell in the grid.

You will need to create a system in the Haskell language which reads in the parameters for

such a simulation, generates, and then outputs the resulting image in the PPM format Make

use of as wide a variety of topics / techniques as you can within the confines of the problem.

https://www.rapidtables.com/convert/color/hsv-to-rgb.html

4 - 9

Each of the following sub-questions can be answered independently. For example, if you are

struggling with input then you can hardcode the values and work on subsequent sub-questions

in the interim. Place each sub-question’s code into separate .hs files.

a) Data structures

You have been provided with a human-readable, serialized instance of a data

structure defining the configuration of such a simulation:

• Name: Configuration

• Fields:

1. A list of integer pairs called points which represents the

initial hotspots in your simulation

2. An integer pair called dimensions representing the number

of rows and columns in your simulation

3. An integer called iterations representing the number of turns to

run your simulation for.

4. A string called imageFile representing the name of image

file to be created representing the final state of your simulation.

Additionally you must create types and type aliases as you see fit to represent the

elements of your problem domain.

[20]

b) Input and Output

You must write a function / set of functions which will read an instance of the

dataset parameters from a specified file as well as save your result in the PPM

format.

PPM is a text-based image format with the following structure:

P3

NUM_COLS NUM_ROWS

255

RED GREEN BLUE RED GREEN BLUE …

.

.

.

RED GREEN BLUE RED GREEN BLUE …

The first line indicates that this will be a colour image (P1 is black and white while

P2 is greyscale). The second line indicates the image dimensions. The third line

indicates the maximum value of any colour component. The remainder of the

image is simply the red, green, and blue colour component values for each pixel

given in sequence.

For example, a 5x4 yellow (255, 255, 0) image would look as follows:

P3

5 4

255

255 255 0 255 255 0 255 255 0 255 255 0 255 255 0

255 255 0 255 255 0 255 255 0 255 255 0 255 255 0

255 255 0 255 255 0 255 255 0 255 255 0 255 255 0

255 255 0 255 255 0 255 255 0 255 255 0 255 255 0

255 255 0 255 255 0 255 255 0 255 255 0 255 255 0

For more information see: https://en.wikipedia.org/wiki/Netpbm

The file extension should be .ppm. You have been provided with the GNU

Image Manipulation Program (GIMP) which is capable of displaying PPM

images.

[20]

https://en.wikipedia.org/wiki/Netpbm

5 - 9

c) Processing

Although the exact problem decomposition is up to you the following aspects are

important:

• Creation and initialisation of the heatmap

• Implementation of the neighbourhood function

• Applying the heat transfer function

• Conversion to the PPM format

• Bonus: Mapping from intensity to Colour (5 marks)

[20]

d) Language Features Used

This section of the marksheet is not meant to be prescriptive. Marks are awarded

for language features used correctly in pursuit of the solution of the problem.

[20]

e) Contextual Values and Types

• Implementation of the Functor typeclass

• Implementation of the heat death function

• Mapping of the heat death function onto the heat map

• Demonstrating compliance with the Functor laws

[20]

6 - 9

7 - 9

8 - 9

9 - 9

