

FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

MODULE CSC2B10

COMPUTER SCIENCE 2B

CAMPUS AUCKLAND PARK CAMPUS (APK)

MAIN EXAM MEMO

DATE: 2020-11-30 **SESSION:** 14:00 - 16:00

ASSESOR(S): MR. T MOODLEY

MS. M FOURIE

MODERATOR: MR J.L. DU TOIT

DURATION: 120 MINUTES **MARKS:** 100

Please read the following instructions carefully:

- 1. Answer all the questions
- 2. Write clearly and legibly.
- 3. You may use a non-programmable calculator to answer the questions.
- 4. This paper consists of 11 pages.

QUESTION 1

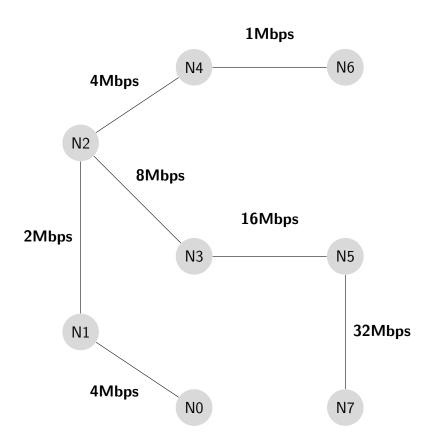
(a) From a service perspective, describe the internet along with an example?

[02]

Solution: Must include description and example - Else max 1 mark for both

- 1 mark for each point with an example
- infrastructure that provides services to applications: Web, VoIP, email, games, e-commerce, social nets, ect \checkmark
- provides programming interface to apps: hooks that allow sending and receiving app programs to "connect" to Internet. It provides service options, analogous to postal service
- (b) Briefly describe how FDM works.

[03]


Solution:

Frequency division multiplexing divides the full bandwidth among users in continuous frequency bands. So each user has continuous bandwidth, which is good for persistent connection.

Total: 5

QUESTION 2

Assume there is a copper network with 8 nodes (N0, N1, N2, N3, N4, N5, N6 and N7) and the transmission rates between these nodes are as follows:

[1]

[02]

It is also determined that the distances between the nodes are as follows: (Note that all working out must be shown, failure to do this may result in the student receiving zero for the question)

- N0-N1: 10km N2-N3: 15km N4-N6: 10km N5-N7: 30km
- N1-N2: 20km N2-N4: 5km N3-N5: 25km

Answer the following questions (Do not round off):

(a) Determine the **approximate transmission rate** when communicating between N0 and N7.

```
Solution:
It will be at 2 Mbps. 0 - for anything else
```

(b) Taking this **approximate transmission rate** into account, how *long* (in seconds) will it take to transfer a 100 MegaByte **file** from node N0 to N7?

```
Solution: if they use a different throughput, max of 1 mark 100*8 = 800 Megabits (1 mark) 800 / 2 = 400 seconds (1 mark) (no if they use their own throughput)
```

(c) If it is determined that the copper installed in this network **propagates** a signal at a speed of 250 000 km/s. *Calculate* the **propagation delay** for communications between N0 to N7.

```
Solution: 10 + 20 + 15 + 25 + 30 = 55 \text{ km } (1 \text{ marks}) Either wrong or right 55 / 250000 = 0.00022 \text{ seconds } (2 \text{ marks})
```

(d) Assuming that there is no nodal processing delay or queueing delay, *calculate* the **total time** taken to transfer a 50 MegaByte file from from N0 to N7?

```
Solution: Transmission delay = 400/4 + 400/2 + 400/8 + 400/16 + 400/32 = 100 + 200 + 50 + 25 + 12.5 \neq 387.5 seconds (2 marks) 1 - for the values and 1 - for the sum Total = 387.5 + 0.00022 = 387.50022 seconds (2 marks) 1 mark if use their own values)
```

Total: 10

QUESTION 3

(a) Within computer networks, we often have complex systems, *briefly* describe two [02] *mechanisms* that deal with the complexity?

Solution:

[03]

- abstraction explicit structure allows identification, relationship of complex system's pieces

 Must have description, max one mark iof they don't have it
 - Modularization Breaks the system up to mitigate the complexity [1 mar
- Modularization Breaks the system up yo mitigate the complexity [1 mark, must have description]
- (b) With aid of a diagram, briefly describe throughput and its relation to bottleneck.

Total: 5

[04]

QUESTION 4

(a) Within the *application layer*, there are different architectures, list and provide a short description of **two** architectures within the application layer.

Solution: max 4

max 4 marks - can list any two Client server – popular today - including data-centre/cloud computing, anything about a client and a server communicating. client - server - one sending host and one recieving(single provider), typical web server setup

Peer – to –peer: No super powerful server – no one provider, uTorrent example.

Hybrid of client server and P2P – You get the strengths for them and they of cover each others weaknesses ✓

(b) What is the role of a **socket**?

[01]

Solution: any 1 fact for 1 mark

Max 1 mark -process sends/receives messages to/from its socket

- -socket analogous to door
- -sending process shoves message out door
- -sending process relies on transport infrastructure on other side of door which brings message to socket at receiving process

Total: 5

[04]

[06]

QUESTION 5

(a) Name and briefly *describe* the two ways multiplexing can be achieved at the **transport layer**.

Solution:

- Connection-oriented multiplexing, where TCP is used to establish a dedicated connection with a 4 tuple (source port and IP)
- Connection-less multiplexing, where UDP is used to exchange information.
- (b) Name three (3) mechanisms in the transport layer that help facilitate reliability **and** provide a reason for why they are needed.

Solution:

(2 marks each) max 6 marks

- 1. Acknowledgements are used to confirm packet delivery.
- 2. Time/s are used to ensure delivery/
- 3. Sequence numbers are used to ensure in order delivery
- 4. Pipelining is used to ensure efficient delivery ✓
- 5. Checksums are used to ensure integrity

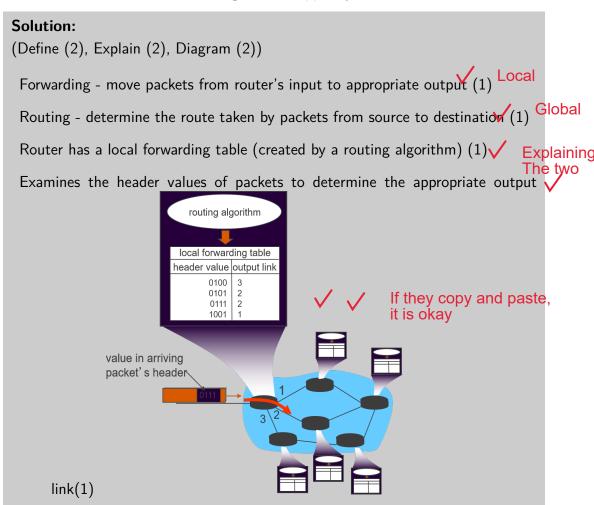
Total: 10

QUESTION 6

The table below represents the payload of a UDP segment. Calculate the **sum** of the following two 16-bit integers, along with their associated 1s complement **checksum**:

Note that all working out must be shown, failure to do this may result in the student receiving zero for the question

Number 1	1	1	0	1	1	0	1	0	0	1	1	0	1	0	1	1	
Number 2	1	0	0	1	0	0	0	0	1	1	1	1	0	1	0	0	
Sum (1)	0	1	1	0	1	0	1	1	0	1	0	1	1	1	1	1	
Wrap around	0	1	1	0	/1	0	1	1	0	1	1	0	/0	0	0	0	
Checksum	1	0	0	1	0	1	0	0	1	0	0	1	1	1	1	1	\ \


Total: 5

[06]

[04]

QUESTION 7

(a) *Discuss* the network layer functions of *forwarding* and *routing*. Your discussion should include an **explanation** of what happens at the network level to facilitate these functions. Make use of a **diagram** to support your answer.

(b) Discuss what **DHCP** is and how it works by referring to a **client-server** scenario.

Solution:

Dynamic Host Configuration Protocol (1)

Max 3 Marks for any of the following (3):

Allows a host to dynamically obtain its IP address from a network server when it joins a network

In a client-server scenario a host broadcasts a DHCP discover message.

DHCP server responds with DHCP offer message. \checkmark

Host requests IP address: DHCP request/

DHCP server respons with DHCP ack message.

Total: 10

QUESTION 8

Given the following **IP** address and **CIDR**, answer the questions that follow (Note that all working out must be shown, failure to do this may result in the student receiving zero for the question):

172.51.37.39/27

(a) Provide this address in binary notation.

[02]

Solution: 10101100 00110011 00100101 00100111

Must show working out - if no then 0
No half marks

(b) How many hosts can this network accommodate?

[02]

Solution:

$$32 - 27 = 5$$

 $2^5 = 32 - 2 = 30$

(c) Assuming classful addressing was used, what class does this address belong to?

[02]

Solution:

Class B.

(d) Calculate the **network address** of this block in dotted decimal notation.

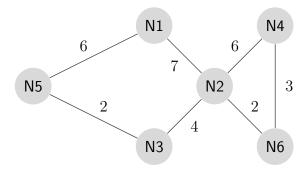
[02]

Solution:

$$00100000 = 32$$

172.51.37.32

(e) Calculate the **broadcast address** of this block in dotted decimal notation.


[02]

Solution: 001**11111** = 63 172.51.37.63.

Total: 10

QUESTION 9

Given the below network **routing graph** (with costs), answer the following questions that follow (Note that all working out must be shown, failure to do this may result in the student receiving zero for the question):

(a) What is the path with the **least cost** when communicating between N4 and N5. Is this the **only** cost effective path?

```
Solution:
N4-N6-N2-N3-N5 (1 mark)
✓
Yes (1 mark) ✓
```

(b) Given the local datagram **forwarding table** for node N2 below and the destination address is 196.83.37.91, which link will this packet be forwarded to? Please ensure to show all your calculations.

Destination Address range	Output Link Interface
11000100 01010011 00100101 01011***	N1
11000100 01010011 00100101 010110**	N3
11000100 01010011 00100101 010111**	N4
Otherwise	N6

Solution:

IP in binary: 11000100 01010011 00100101 01011011 (2marks)

Link N3 (1 mark)

They just have to convert the last one

Total: 5

[05]

[03]

QUESTION 10

(a) Within the context of the **data link layer**, *describe* how random access MAC protocols work. Under which **network circumstances** are random access MAC protocols **efficient**? Give a **reason** for your answer.

Solution:

- When a node has a packet to send it can transmit at full channel data rate(1) ✓ circumstance
- Two or more transmitting nodes = collision (1)
- Random Access MAC protocol specifies how to detect and recover from collisions (1)

Max 1 mark

- (Examples include ALOHA, slotted ALOHA, CSMA, CSMA/CD, CSMA/CA)
- Random Access MAC is efficient at a low load, because a single node can fully utilize teh channel (2)
- (b) Discuss what **PPP** is and **what** it is typically used for.

[05]

Solution:

- Point to point protocol (2)
- Commonly used to establish a direct connection between two nodes (1)
- Connect computers using serial cable, phone link etc (1)√
- Most ISPs use PPP for customers' dial-up access to the Internet(1)

Total: 10

QUESTION 11

(a) You have been approached by the South African government to create an **Android** mobile application which will handle confidential information. **Which two** security best-practice principles would be your main focus in the creation of the app? Give a **reason** for your answer.

[03]

Solution:

(2 marks for the principle, 1 mark for the reason)

- Encrypt your data
- Detect insecure devices
- Authenticate users and keys using bio metrics
- Communicate securely (SSL)
- Testing
- · Audit third party libraries
- REASON any valid reason: Confidentiality, integrity, privacy etc.

(b) Briefly discuss how the Ping command works.

[02]

Solution:

- · Ping tests if a remote host is alive.
- Uses ICMP protocol. Must provide either hostname or IP address as parameter for this command.

Total: 5

QUESTION 12

Provide Java source code for a **UDP Client** that sends a message (entered by the user) to a UDP server that runs on port 9494. The client should receive the server response and print it out to the user.

```
Solution:
Ignore letters
 1 import java.io.*;
 2 import java.net.*;
 3 class UDPClient
 4 {
    public static void main(String args[])
 5
 6
 7
       try
 8
         BufferedReader inFromUser =
 9
             new BufferedReader(new InputStreamReader(System.in)); //1
10
         DatagramSocket clientSocket = new DatagramSocket();
11
12
         InetAddress IPAddress = InetAddress.getByName("localhost");
         byte[] sendData = new byte[1024]; //1
13
         byte[] receiveData = new byte[1024];
14
         String sentence = inFromUser.readLine();
         sendData = sentence.getBytes(); //1
16
         DatagramPacket sendPacket =
17
18
             new DatagramPacket(sendData, sendData.length, IPAddress,
                 9494); //1
         clientSocket.send(sendPacket); //1
19
         DatagramPacket receivePacket = new DatagramPacket(receiveData
20
             , receiveData.length); //1
         clientSocket.receive(receivePacket); //1
         String modifiedSentence = new String(receivePacket.getData())
22
         System.out.println("FROM SERVER:" + modifiedSentence);
23
         clientSocket.close();
24
       }
25
       catch(IOException io)
26
27
         System.err.println(io.getMessage());
28
29
    }
30
31 }
```

Total: 10

QUESTION 13

The code below illustrates a **TCP** server that handles client requests including the return of a specified png file. Fill in the missing code for sections A to G. Clearly label your answers.

```
public class TCPHandler implements Runnable {
    private Socket
                            connectionToClient;
    private BufferedReader txtin;
    private PrintWriter
                             txtout;
    public TCPHandler(Socket newConnectionToClient) {
        connectionToClient = newConnectionToClient;
7
        InputStream is = __( A (1 marks) )__; // Setup text in stream
        txtin = new BufferedReader(new InputStreamReader(is));
        // Setup text out stream
10
        txtout = new PrintWriter(/*Omitted*/);
11
12
      catch (IOException ex) { ex.printStackTrace(); }
13
14
    public void run() {
15
      boolean processing = true;
16
17
      try {
        while (processing) {
18
          String message = __( B (1 marks) )__; // Get client message
19
          StringTokenizer msgTokens = new StringTokenizer(message);
          String command = msgTokens.nextToken().toUpperCase();
          switch (command) {
22
            case "GREETING": {
23
              String name = __( C (1 marks) )__;
24
               sendResponse("HI " + name);
25
              break;
26
            }
27
            case "GETFILE": {
28
              String fileID = msgTokens.nextToken();
29
              String fileName = fileID +".png";
30
              File fileToReturn = new File("data/server/"+fileName);
31
              if(fileToReturn.exists())
32
33
                txtout.println(__( D (1 marks) )__);//send the file
34
                    size to the client
                txtout.flush();
36
                FileInputStream fis = new FileInputStream(fileToReturn)
37
                byte[] buffer = new byte[1024];
                 int n= 0;
39
                while(__( E (2 marks) )__)
40
41
                   __( F (2 marks) )__
                  dos.flush();
43
44
                fis.close();
45
                 System.out.println("File sent to client");
46
47
```

```
48
             break;
49
             case "PARTING": {
50
               processing = false;
               sendResponse("BYE");
52
               break;
53
             }
54
             default: {
               sendResponse("ERROR");
56
57
           }
58
        }
59
60
      catch (IOException ex) { ex.printStackTrace(); }
61
      finally { // Cleanup
62
        try {
           __( G (2 marks) )__
64
65
         catch (IOException ex) { ex.printStackTrace(); }
66
67
68
    private void sendResponse(String response) {
69
      txtout.println(response);
71
      txtout.flush();
72
73 }
```

Solution:

Question	Code	Mark
А	connectionToClient.getInputstream()	1
В	txtin.readline()	1
С	msgTokens.nextToken()	1
D	fileToReturn.length()	1
Е	(n=fis.read(buffer))>0	2
F	dos.write(buffer,0,n);	2
G	connectionToClient.close()	2

Total: 10

The End!