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1. Find the complete series solution for the ordinary differential equation y′′ + 1
x2
y′ − 2

x2
y = 0.

[7]

2. Solve the ordinary differential equation d2φ
dω2 +m dφ

dω = e−ω using the Green’s function method
for ω ≥ 0. Observe the initial conditions φ(0) = φ′(0) = 0. [12]

3. Determine the integral
∫∞
0

dx
1+x2

using calculus of residues. [6]

4. Determine the Fourier series for the function f(x) = x3 for −π < x < π.
Would the result differ, if the intervall was 0 < x < 2π? Explain. [7]

5. A number of physics problems involve terms of the form 1
(ω0−ω)−iγ . Compute its inverse

Fourier transform for γ > 0. [7]

6. Derive the Green’s function G(~r, ~r′) = 1
4π|~r−~r′| for the Poisson equation ∇2Φ = ρ

ε0
using

Fourier transforms. Do not use knowledge about Coulomb potential.

You may use FT[ 1
k2

] =
(
π
2

)1/2 1
r . [5]

7. The Lagrangian of an electromagnetic field with charge density ρ and current density ~J is

given by L = 1
2

(
ε~E2 − 1

µ
~B2
)
− ρφ+ ~A · ~J with ~B = ∇× ~A and ~E = −∇φ− ∂ ~A

∂t . Use these

three equations to derive all four Maxwell equations. [11]

—END OF PAPER—

1/ 1


