FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS	
MODULE	MAT8X13
	SET THEORY AND LOGIC
CAMPUS	APK
ASSESSMENT	EXAM

DATE 18/06/2020
ASSESSOR
MODERATOR

DURATION 6 HOURS

MARKS 90
DR C RATHILAL
PROF D BABOOLAL (UKZN)
SUBMISSION DEADLINE: 14:00

INSTRUCTIONS:

1. ANSWER ALL QUESTIONS.
2. QUESTIONS CAN BE ANSWERED IN ANY ORDER.
3. SHOW ALL CALCULATIONS AND MOTIVATE ALL ANSWERS.
4. USING CAMSCANNER CREATE A PDF SCAN OF YOUR SOLUTIONS (USE THE MAGIC FILTER).
5. ATTACH THE SCAN TO EMAIL AND SEND TO crathilal@uj.ac.za BY 14:00. LATE SUBMISSIONS NOT ACCEPTED.
6. GOOD LUCK.

Question 1 [3 marks]

(a) Show that if $A \subseteq B$ then $\bigcup A \subseteq \bigcup B$.
(b) Show that there is no set to which every singleton (that is, every set of the form $\{x\}$) belongs.

Question 2 [5 marks]
(a) Give an example of sets a and B for which $a \in B$ but $\wp(a) \notin \wp(B)$.
(b) Show that $\bigcup\{\wp(X) \mid X \in \mathcal{A}\} \subseteq \wp(\bigcup \mathcal{A})$.

Under what conditions does equality hold?
(c) Simplify $\bigcap\{\wp(\wp(\wp(\{\emptyset\}))), \wp(\wp(\{\emptyset\})), \wp(\{\emptyset\})\}$.

Question 3 [9 marks]

(a) Given sets A and B, define $A \times B$. Provide a justification for the definition. That is, explain fully with the use of axioms and results.
(b) Show that the following generalisation of ordered pairs to ordered triples by defining

$$
\begin{equation*}
\langle x, y, z\rangle^{*}=\{\{x\},\{x, y\},\{x, y, z\}\} \tag{2}
\end{equation*}
$$

is unsuccessful by giving an example.
(c) For a set F, show that F^{-1} is a function iff F is single rooted.
(d) Let

$$
\begin{equation*}
F=\{\langle\emptyset,\{\{\emptyset\},\{\emptyset\}\}\rangle,\langle\{\emptyset\}, \emptyset\rangle\} . \tag{2}
\end{equation*}
$$

Evaluate the following: $F \circ F, F^{-1}, F[\{\emptyset\}]$, and $F(\emptyset)$.

Question 4 [2.5 marks]

Consider $S \subseteq \mathbb{Q} \times \omega$ defined by $S=\left\{\left\langle\frac{a}{b}, a^{2}+2 b^{2}\right\rangle: a, b \in \mathbb{Z}, b \neq 0\right\}$.
(a) Is S a function from \mathbb{Q} to ω ? Justify your answer.
(b) Give one element of the set $\omega \backslash \operatorname{ran}(S)$. Justify your answer.

Question 5 [9.5 marks]

(a) Show that R is transitive iff $R \circ R \subseteq R$
(b) Find 2 equivalence relations on the set $\{0,1,2\}$. Justify your answers.
(c) Assume that R is a linear ordering on a set A. Show that R^{-1} is also a linear ordering on A.
(d) Find all linear orderings on $\{0,1,2\}$ that contain $\langle 0,2\rangle$.
(e) Simplify $\varepsilon^{-1}[\{6,7\}]$.

Question 6 [6 marks]

(a) Let \mathcal{A} be a non-empty set. Assume that every member of \mathcal{A} is a transitive set. Show that $\bigcap \mathcal{A}$ is a transitive set.
(b) Determine if the following set is transitive : $\{0,1,\{1\}\}$. Justify your answer.
(c) Write an expression for the set " 3 " using only $\emptyset,\{$,$\} , and commas.$
(d) Let $A=\{1\}$. Calculate A^{+}and $\bigcup\left(A^{+}\right)$.

Question 7 [5.5 marks]
(a) For any sets A and B, show that if $A \approx B$ then $B \approx A$.
(b) State two properties of the set ω. What is card ω ? Give 2 examples of infinite cardinals, other than card ω.
(c) Let κ, λ and μ be cardinal numbers, and consider the following statement:

$$
\kappa \leq \lambda \Rightarrow \kappa+\mu \leq \lambda+\mu
$$

Give a counter example to show that the above statement cannot be strenghtened by replacing \leq by $<$.

Question 8 [6 marks]

(a) Prove that the following statement is equivalent to the axiom of choice: For any set \mathcal{A} whose members are non-empty sets, there is a function with domain \mathcal{A} such that $f(X) \in X$, for all $X \in \mathcal{A}$.
(b) Recall Theorem 6N from your Set Theory textbook:

$$
\text { For any infinite set } A \text {, we have } \omega \preceq A \text {. }
$$

State the definitions of functions g and h from the proof of Theorem 6 N and show that $g[n]=h(n)$, for $n \in \omega$.

Question 9 [8 marks]

(a) Using the Regularity axiom, show that there does not exist any sets a and b with $a \in b$ and $b \in a$.
(b) Let α be an ordinal. Show that any element of α is an ordinal.
(d) Let A be a non-empty set of ordinals. Show that if A has a greatest element α, then $\bigcup A=\alpha$, otherwise $\bigcup A$ is a limit ordinal.

Question 10 [9 marks]
(a) Without constructing a full truth table, show that the statement form $(((p \rightarrow q) \wedge p) \rightarrow q)$ is a tautology.
(b) Find, systematically, a statement form in disjunctive normal form that is logically equivalent to $(p \rightarrow q) \rightarrow(\sim(q \rightarrow p))$
(c) Let Γ be a set of wfs of the classical propositional calculus L , prove that if $\Gamma \vdash_{L} B$ then $\Gamma \cup\{\sim B\}$ is inconsistent in L
(d) Using only the DT, the IL and (generalised) modus ponens, show that $\vdash_{L}((\sim B) \rightarrow(\sim A)) \rightarrow(A \rightarrow B)$

In the remaining questions, T denotes a first order theory (with equality), and A, B denotes wfs of T.

Question 11 [10 marks]
(a) Using the axioms and the rules of T, and the Theorem on Tautologies (but not the completeness Theorem for T), show that

$$
\begin{equation*}
\vdash_{T}(\sim(x=z) \rightarrow(\forall y)[(x=y) \rightarrow(\sim(y=z))] \tag{3}
\end{equation*}
$$

Hint: Let A abbreviate $\sim(x=z)$
(b) Prove the Validity Theorem: The theorems of T are valid in every model of T. (4)
(c) Let G be a first order theory for groups and let A be the wf $x=0$.

Use the Validity Theorem to show that $\vdash_{G} A$. Be precise.

Question 12 [9 marks]
(a) Prove that $\left.\vdash_{T}((\forall x) B) \rightarrow(\sim(\exists x)(\sim B))\right)$. Do no use the Completeness Theorem.
(b) Determine if the following statement is logically valid: $((\forall x)(\exists y) A) \rightarrow((\exists y)(\forall x) A)$.
(c) Prove that if we drop the requirement in an (A4) axiom that A admits t for x, then we lose the Validity Theorem.

Question 13 [7.5 marks]
(a) Let Γ be a set of wfs of T. Show that Γ has a model if and only if every finite subset of Γ has a model.
(b) Recall that if T is an axiomatic first order theory, then its axioms can be enumerated effectively, i.e., there is a mechanical procedure for producing a list $A_{1}, A_{2}, A_{3}, \ldots$ of all axioms of T. Explain why, in this case, the theorems of T can also be enumerated effectively.
(c) Let N denote Peano's first order theory of arithmetic. Assume that N is consistent. Deduce from Gödels first Incompleteness Theorem that there exists a closed wf A of N and a model \mathcal{S} of N such that A is true in \mathcal{S} but false in the standard model \mathcal{N} of N.

