## University of Johannesburg

## FACULTY OF SCIENCE

## Pure and Applied Mathematics (APK) MAT8X01 <br> Graph Theory A SUPPLEMENTARY EXAM July 2020

Examiner ..................................................... Dankelmann
External Examiner ...... Dr. D. Erwin (University of Cape Town)
Time .................................................................... 4 hours
Total marks .......................................................................... 50
Please read the following instructions carefully:

1) Answer all questions.
2) This paper consists of this cover page and two pages of questions.

# Graph Theory Honours MAT8X01 <br> <br> Supplementary Exam 

 <br> <br> Supplementary Exam}

Total marks: 50 July 2020

Question 1
$[3+2+2.5]$
(a) Determine if the following sequences are graphical. For each graphical sequence construct a graph having this sequence as a degree sequence:
$\begin{array}{ll}\text { (i) } 4,4,2,2,1,1, & \text { (ii) } 5,5,4,3,2,1 \text {. }\end{array}$
(b) Let $s: d_{1}, d_{2}, \ldots, d_{n}$ be a graphical sequence. Prove that the sequence $s^{\prime}: d_{1}, d_{1}, d_{2}, d_{2}, d_{3}, d_{3}, \ldots, d_{n}, d_{n}$, that is the sequence of length $2 n$ in which every entry of $s$ is repeated, is graphical.
(c) Use the adjacency matrix of the graph below to determine the number of walks of length 4 from $v_{1}$ to $v_{2}$.


Question 2
$[2+1.5+2]$
(a) Let $G$ be a graph of order $n$ and size $n-1$ with the property that removing any edge increases the number of components of $G$. Prove that $G$ is a tree.
(b) Let $T$ be a tree. $75 \%$ of the vertices of $T$ have degree 1 , while the remaining $25 \%$ have degree 3. Determine the order of $T$.
(c) Decide for each of the following sequences if it is the degree sequence of a tree. If it is, is every graph with this degree sequence a tree? Give reasons.
(i) $4,4,2,2,1,1,1,1,1,1$, (ii) $4,4,2,2,1,1$.

## Question 3

$[2.5+3+2]$
(a) Let $T$ be the tree below. Determine its Prüfer code.

(b) Determine the labelled tree with Prüfer code 1515. Show your working.
(c) Determine the number of labelled trees with vertex set $\{1,2, \ldots, n\}$ in which vertices 1 and 2 are leaves.
(a) Use the matrix-tree theorem to determine the number of spanning trees of the graph below.

(b) Use Kruskal's algorithm to find a spanning tree of minimum weight of the following weighted graph. Show every step of the algorithm.


Question 5
$[3.5+2+2.5]$
(a) Let $G$ be a $k$-connected graph, $k \geq 2$, and let $v_{1}, v_{2}, \ldots, v_{k}$ be $k$ different vertices. Assume that $G$ has a cycle $C$ that contains $v_{1}, v_{2}, \ldots, v_{k-1}$. Show that $G$ contains a cycle that contains $v_{1}, v_{2}, \ldots, v_{k}$ (and possible other vertices).
(b) Let $G$ be a graph of order 21, minimum degree 10 and maximum degree 20. Determine $\lambda(G)$. Give two different reasons for your answer.
(c) True or false? Let $k \in \mathbb{N}$ with $k \geq 2$. If $G$ is a $k$-connected graph and $u, v, w$ three distinct vertices of $G$, then there exist $k-1$ internally disjoint paths from $u$ to $v$, none of which contains $w$. Give a proof or a counter-example.

## Question 6

(a) Let $G_{1}$ and $G_{2}$ be two vertex disjoint connected graphs. Let $v_{1}$ be a vertex of $G_{1}$ and $v_{2}$ a vertex of $G_{2}$. Is the following statement always true, sometimes true, or always false? The graph $H$, obtained from $G_{1}$ and $G_{2}$ by adding the edge $v_{1} v_{2}$, is Eulerian. Give reasons for your answer.
(b) Let $G$ be a 3-regular graph. Assume that it is possible to add three edges to $G$ to obtain an Eulerian graph. Determine the number of vertices of $G$.

## Question 7

$[1.5+1+2.5+2]$
(a) Let $a \in \mathbb{N}$ with $a \geq 2$. Let $G$ be the complete bipartite graph $K_{a, a}$. Prove that the closure of $G$ is complete.
(b) Let $a \in \mathbb{N}$ with $a \geq 1$ Give two different proofs that the complete bipartite graph $K_{a, a+1}$ has a Hamilton path.
(c) Give an example of a 3-connected graph that does not have a Hamilton cycle. Prove that your graph does not have a Hamilton cycle.
(d) Determine the toughness of the following Hamiltonian graph. Give reasons.


## Question 8

$[2+2+2]$
(a) Decide if the following graph has a strong orientation. If yes, find such an orientation.

(b) True or false? Every Eulerian graph has a strong orientation. Give reasons.
(c) Decide if the graph in (a) has an Eulerian orientation. If no, give reasons. If yes, find such an orientation.

