University of Johannesburg

FACULTY OF SCIENCE

Pure and Applied Mathematics (APK) MAT8X01 Graph Theory A SUPPLEMENTARY EXAM July 2020

Examiner	Prof P. Dankelmann
External Examiner Dr. D.	Erwin (University of Cape Town)
Time	
Total marks	

Please read the following instructions carefully:

1) Answer all questions.

2) This paper consists of this cover page and two pages of questions.

Graph Theory Honours MAT8X01 Supplementary Exam

Total marks: 50July 2020

Question 1

[3+2+2.5]

(a) Determine if the following sequences are graphical. For each graphical sequence construct a graph having this sequence as a degree sequence:

(i) 4,4,2,2,1,1, (ii) 5,5,4,3,2,1.

(b) Let $s : d_1, d_2, \ldots, d_n$ be a graphical sequence. Prove that the sequence $s' : d_1, d_1, d_2, d_2, d_3, d_3, \ldots, d_n, d_n$, that is the sequence of length 2n in which every entry of s is repeated, is graphical.

(c) Use the adjacency matrix of the graph below to determine the number of walks of length 4 from v_1 to v_2 .

Question 2

[2+1.5+2]

(a) Let G be a graph of order n and size n-1 with the property that removing any edge increases the number of components of G. Prove that G is a tree.

(b) Let T be a tree. 75% of the vertices of T have degree 1, while the remaining 25% have degree 3. Determine the order of T.

(c) Decide for each of the following sequences if it is the degree sequence of a tree. If it is, is every graph with this degree sequence a tree? Give reasons.
(i) 4, 4, 2, 2, 1, 1, 1, 1, 1, 1, (ii) 4, 4, 2, 2, 1, 1.

Question 3

(a) Let T be the tree below. Determine its Prüfer code.

[2.5+3+2]

(b) Determine the labelled tree with Prüfer code 1515. Show your working. (c) Determine the number of labelled trees with vertex set $\{1, 2, ..., n\}$ in which vertices 1 and 2 are leaves.

Question 4

(a) Use the matrix-tree theorem to determine the number of spanning trees of the graph below.

(b) Use Kruskal's algorithm to find a spanning tree of minimum weight of the following weighted graph. Show every step of the algorithm.

Question 5

[3.5+2+2.5]

[2.5+2.5]

(a) Let G be a k-connected graph, $k \geq 2$, and let v_1, v_2, \ldots, v_k be k different vertices. Assume that G has a cycle C that contains $v_1, v_2, \ldots, v_{k-1}$. Show that G contains a cycle that contains v_1, v_2, \ldots, v_k (and possible other vertices). (b) Let G be a graph of order 21, minimum degree 10 and maximum degree 20.

Determine $\lambda(G)$. Give two different reasons for your answer. (c) True or false? Let $k \in \mathbb{N}$ with $k \geq 2$. If G is a k-connected graph and u, v, w three distinct vertices of G, then there exist k-1 internally disjoint paths from u to v, none of which contains w. Give a proof or a counter-example.

Question 6

[2.5+2.5]

(a) Let G_1 and G_2 be two vertex disjoint connected graphs. Let v_1 be a vertex of G_1 and v_2 a vertex of G_2 . Is the following statement always true, sometimes true, or always false? The graph H, obtained from G_1 and G_2 by adding the edge v_1v_2 , is Eulerian. Give reasons for your answer.

(b) Let G be a 3-regular graph. Assume that it is possible to add three edges to G to obtain an Eulerian graph. Determine the number of vertices of G.

Question 7

[1.5+1+2.5+2]

(a) Let $a \in \mathbb{N}$ with $a \geq 2$. Let G be the complete bipartite graph $K_{a,a}$. Prove that the closure of G is complete.

(b) Let $a \in \mathbb{N}$ with $a \ge 1$ Give two different proofs that the complete bipartite graph $K_{a,a+1}$ has a Hamilton path.

(c) Give an example of a 3-connected graph that does not have a Hamilton cycle. Prove that your graph does not have a Hamilton cycle.

(d) Determine the toughness of the following Hamiltonian graph. Give reasons.

Question 8

[2+2+2]

(a) Decide if the following graph has a strong orientation. If yes, find such an orientation.

(b) True or false? Every Eulerian graph has a strong orientation. Give reasons.(c) Decide if the graph in (a) has an Eulerian orientation. If no, give reasons. If yes, find such an orientation.