University of Johannesburg

FACULTY OF SCIENCE

Pure and Applied Mathematics (APK) MAT8X01
 Graph Theory A EXAM
 June 2020

Examiner ... Dankelmann
External Examiner Dr. D. Erwin (University of Cape Town)
Time .. 4 hours
Total marks 50

Please read the following instructions carefully:

1) Answer all questions.
2) This paper consists of this cover page and two pages of questions.

Graph Theory Honours MAT8X01

Total marks: 50 ... 2020

Question 1
$[3+2+2.5]$
(a) Determine if the following sequences are graphical. For each graphical sequence construct a graph having this sequence as a degree sequence:
(i) $4,4,3,3,3,1, \quad$ (ii) $5,5,4,4,3,1$.
(b) Let $s: d_{1}, d_{2}, \ldots, d_{n}$ be a graphical sequence. Prove that the sequence $s^{\prime}: n-1-d_{n}, n-1-d_{n-1}, \ldots, n-1-d_{1}$ is graphical.
(c) Use the adjacency matrix of the graph below to determine the number of walks of length 4 from v_{1} to v_{2}.

Question 2
$[2+1+2]$
(a) Let T_{1} and T_{2} be two vertex disjoint trees. Let T be the graph obtained from T_{1} and T_{2} by choosing a vertex v_{1} of T_{1} and a vertex v_{2} of T_{2}, then adding a new edge $v_{1} v_{2}$. In other words, $V(T)=V\left(T_{1}\right) \cup V\left(T_{2}\right)$ and $E(T)=$ $E\left(T_{1}\right) \cup E\left(T_{2}\right) \cup\left\{v_{1} v_{2}\right\}$. Prove that T is a tree.
(b) Let T be a tree of order 9. The degrees of eight vertices are given: One vertex has degree 5 , three vertices have degree 2 , four vertices have degree 1 . What is the degree of the ninth vertex? Give reasons.
(c) Decide for each of the following sequences if is the degree sequence of a tree. If it is, is every graph with this degree sequence a tree? Give reasons.
(i) $4,3,2,1,1,1,1,1$, (ii) $3,3,3,2,1,1,1$.

Question 3

$[2.5+3+2.5]$
(a) Let T be the tree below. Determine its Prüfer code.

(b) Determine the tree with Prüfer code $1,5,5,5$.
(c) Let T be a labelled tree. Assume that the Prüfer code of T is known, except for one missing entry: $1,3,5,5, \ldots, 4,9,6$. List all possible values for the missing entry? Give reasons for your answer.
(a) Use the matrix-tree theorem to determine the number of spanning trees of the graph below.

(b) Use Kruskal's algorithm to find a spanning tree of minimum weight of the following weighted graph. Show every step of the algorithm.

Question 5
$[3.5+2.5+2.5]$
(a) Let G be a connected graph. Assume that G has a minimum edge-cut S and a component G_{1} of $G-S$ such that every vertex in G_{1} is, in G, incident with at least one edge of S. Prove that $\lambda(G)=\delta(G)$.
(b) Let G be a graph with minimum degree δ. Let H be the graph obtained from G by adding a new vertex z and edges from z to every vertex in G. Determine $\lambda(H)$. Give reasons for your answer.
(c) Let G be a k-connected graph of order n. Prove that the diameter of G cannot be greater than $1+\frac{n-2}{k}$.

Question 6
(a) Let G be a graph in which every vertex has degree 3 or 5 . Prove or disprove: If \bar{G}, the complement G, is connected, then \bar{G} is Eulerian.
(b) Let G be an Eulerian graph. Prove that no edge of G is a bridge.
(a) Let $a \in \mathbb{N}$ with $a \geq 2$. Let G be the complete bipartite graph $K_{a, a}$. Choose three different sufficient conditions for Hamiltonian graphs from the lecture and apply them to show that G is Hamiltonian. (Do not prove that G is Hamiltonian by constructing a Hamilton cycle.)
(b) Show that the following graph is NOT Hamiltonian.

(c) Given $n \in \mathbb{N}$ with $n \geq 3$. Determine the toughness of the graph $K_{n}-e$, the graph obtained from K_{n} by removing an edge.

Question 8

$$
[2+2+2]
$$

(a) Decide if the following graph has a strong orientation. If yes, find such an orientation.

(b) True or false? Every 1-tough graph with at least 3 vertices has a strong orientation. Give reasons.
(c) Decide if the graph in (a) has an Eulerian orientation. If no, give reasons. If yes, find such an orientation.

