UNIVERSITY OF JOHANNESBURG

UNIVERSITY
JOHANNESBURG
FACULTY OF SCIENCE

	Examiner	Moderator
Marks		

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

NATIONAL DIPLOMA IN ENGINEERING:
ELECTRICAL/MECHANICAL/INDUSTRIAL ENGINEERING
CAMPUS: DFC
MODULE: MAT3AW3 ENGINEERING MATHEMATICS 3

22 MAY 2020

ASSESSOR	DR PG DLAMINI/DR SIMELANE
MODERATOR	MR M SEJESO
MARKS	100

NUMBER OF PAGES: 3

REQUIREMENTS : INFORMATION BOOKLET NON-PROGRAMMABLE SCIENTIFIC CALCULATOR

INSTRUCTIONS : Please write your particulars on all pages of your answer sheet. Answer all the questions.

1. (a) Sketch the graph of the function $f(t)=\left(1-t^{2}\right)[H(t-1)-H(t-3)]$ for $t \geq 0$.
(b) Evaluate $\frac{1}{D^{2}+7}\left\{\cos \sqrt{7} t+e^{-\pi t}\right\}$
(c) The function represented by the graph below is defined analytically as

$$
f(t)= \begin{cases}t & 0 \leq t<5 \\ 0 & t \geq 5\end{cases}
$$

(i) Express $f(t)$ in terms of Heaviside functions.
(ii) Find $L\{f(t)\}$
2. Determine the unique solutions of the following differential equations by using the Laplace transform, subject to the indicated initial conditions:
(a) $y^{\prime \prime}-4 y=4 t, \quad y(0)=0, y^{\prime}(0)=-1$
(b) $y^{\prime \prime}-4 y^{\prime}-5 y=2 \delta(t-2), \quad y(0)=-1, y^{\prime}(0)=0$
(c) $y^{\prime \prime}+2 y^{\prime}-3 y=e^{-3(t-2)} H(t-2) \quad y(0)=1, y^{\prime}(0)=1$,
3. Find the general solutions of the following differential equations, using D-operator methods.
(a) $\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}=5 \cos 3 t-\frac{2}{e^{t}}$,
(b) $\left(D^{2}+D-2\right) y=x^{2} e^{3 x}$,
4. The equation governing the build up of charge, $q(t)$, on the capacitor of an $R C$ circuit is

$$
R \frac{d q}{d t}+\frac{1}{C} q=v_{0}
$$

where v_{0} is the constant d.c. voltage. Initially, the circuit is relaxed and the circuit 'closed' at $t=0$ and so $q(0)=0$ is the initial condition for the charge. Let $R=0.5, c=2$ and $v_{0}=10$.
(a) Use the Laplace transform to solve the differential equation for $q(t)$.
(b) Use D-operator methods to solve the differential equation for $q(t)$.
5. Use D-operator methods to solve the following system of differential equations for x and y,

$$
\begin{array}{r}
7 x^{\prime}+7 y^{\prime}+2 x=3 e^{t} \\
x^{\prime}+3 y^{\prime}+y=3 \tag{13}
\end{array}
$$

6. Find a Fourier series for the following function

$$
f(x)=\left\{\begin{array}{ll}
1 & 0 \leq x \leq \pi \tag{15}\\
\cos x & \pi<x \leq 2 \pi
\end{array} ; \quad f(x)=f(x+2 \pi)\right.
$$

7. Obtain the half-range Fourier sine series for the following function:

$$
f(x)=3-x, \quad 0 \leq x \leq 3 \quad \text { and } \quad f(x)=f(x+6)
$$

