Faculty of Science

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
 MODULE MAT3A01 / MAT01A3
 REAL ANALYSIS
 CAMPUS APK
 EXAM JUNE 2020

Date 12/06/2020
Session 00:01-11:30
AsSessor
Dr G Braatvedt

External Moderator
Dr L Lindeboom
Duration 2.25 Hours
40 Marks

Surname and initials:
Student number:

Tel No.:

INSTRUCTIONS:

1. The paper consists of $\mathbf{8}$ printed pages, excluding the front page.
2. Read the questions carefully and answer all questions.
3. Write out all calculations (steps) and motivate all answers.
4. Questions are to be answered on the question paper in the space provided. Please indicate when the blank side of a page is used.
5. Good luck - write well :-)

Question 1

Establish the convergence or divergence of the following sequences in full detail:
(a) $x_{n}=\left(1-\frac{1}{2 n}\right)^{n}$
(b) $y_{n}=\sqrt{n}$

Question 2

Prove or disprove that $\left(z_{n}\right)$ is Cauchy if

$$
z_{n}=\frac{2 \sqrt{n}}{\sqrt{n}-1} .
$$

(a) Using the definition of Cauchy.
(b) Using any other technique.

Consider the function $f(x)=\frac{1}{x^{2}-1}$.
Show, using the definition of continuity, that f is continuous on $(-1,1)$.

Let $g(x)=\frac{1}{\sqrt{x}-1}$.
(a) Establish whether or not g is uniformly continuous on $[0,1)$ using the Continuous Extension Theorem.
(b) Establish whether or not g is uniformly continuous on $[2,3]$.

Question 5
Consider the function $h(x)=\frac{1}{x+3}$.
(a) Determine whether or not h is Lipschitz on $[-1, \infty)$.
(b) Show that h is not uniformly continuous on $(-3, \infty)$, by making use of the Nonuniform Continuity Criterion.

Question 6
Give an example of the following, if such an example exists (if no such example exists, explain why):
(a) A divergent sequence, with a large number K of convergent subsequences.
(b) A function that is discontinuous on the whole of \mathbb{R}.

Question 7

True or false (if true: give a short motivation; if false, give a counterexample):
(a) If $\left(x_{n}\right)$ is unbounded and $x_{n} \leq y_{n}$ for all $n \in \mathbb{N}$, then $\left(y_{n}\right)$ is divergent.
(b) If f is continuous on $A \subseteq \mathbb{R}$ then f is uniformly continuous on A.

Question 8
Let $f: A \rightarrow \mathbb{R}$. Assume that f has an absolute maximum and absolute minimum on each $\emptyset \neq B \subseteq A$.
(a) Prove or disprove that f is continuous on A.
(b) Suppose, additionally, that $f(A)$ has a cluster point. Prove or disprove that f is continuous on A.

