## UNIVERSITY OF JOHANNESBURG



FACULTY OF SCIENCE

# DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

## MAT3A20 / MAT02A3

## DISCRETE MATHEMATICS AND LOGIC

#### ONLINE SUPPLEMENTARY EXAM

**JULY 2020** 

Examiner: Moderator: Availability: 00:00 to 12:30 Dr. F. Schulz Prof. W. Conradie (Wits) **35** MARKS

## INSTRUCTIONS:

- 1. The paper consists of **3** pages, **including** the front page.
- 2. Answer all **nine** questions.

#### 3. Write out all calculations (steps) and motivate all answers.

- 4. Read the questions carefully.
- 5. Questions are to be answered neatly on your own pieces of paper. Please ensure that your details (initials, surname and student number) are clearly written on the first page.
- 6. Please scan your answers and submit it as a **single** and **neat** pdf document before the deadline which is 12:30.
- 7. Non-programmable calculators are allowed.
- 8. This is an open book test.
- 9. Good luck!

Question 1

Let A, B and C be sets. Prove that

 $(A \cap B) - C \subseteq B - C.$ 

Moreover, show by example that the set containment above can be strict.

Question 2 [6] Let  $\mathscr{G}$  be the set of all (undirected) graphs with vertex set  $\{v_1, v_2, \ldots, v_n\}, n \geq 3$ . Note that two graphs  $G_1$  and  $G_2$  in  $\mathscr{G}$  are equal if and only if  $E(G_1) = E(G_2)$ . For any  $G, H \in \mathscr{G}$  we write  $H \subseteq^* G$  to indicate that H is a subgraph of G.

- (a) Prove that  $\subseteq^*$  is a partial order on  $\mathscr{G}$ . (3)
- (b) Is  $\subseteq^*$  a linear order? Motivate your answer. (1)
- (c) Is  $(\subseteq^*)^{\text{sym}}$  an equivalence relation? Justify your answer clearly.

Question 3

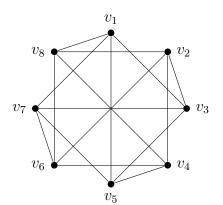
- (a) Determine whether or not  $\neg p \lor (q \land r) \models \neg (r \rightarrow q)$  by making use of a truth table. (3)
- (b) A set  $\mathcal{S}$  of propositional formulas is said to be *satisfiable* if and only if there is some assignment of truth values to the propositional variables that satisfies all the formulas belonging to  $\mathcal{S}$ . Is  $\{p \leftrightarrow \neg r, \neg p \lor (q \land r), \neg (r \to q)\}$  satisfiable? Motivate. (2)

Question 4

Make use of known equivalences to construct a DNF equivalent to the *negation* of the following formula:

$$p \leftrightarrow \neg ((p \land q) \to r)$$

Question 5


Show that if we take n+1 elements from the set  $\{1, 2, ..., 2n-1, 2n\}$ , then some pair of numbers will have no factors other than 1 in common.

#### Question 6

Solve the recurrence relation  $a_n = 2\sqrt{3}a_{n-1} - 4a_{n-2}$  where  $a_0 = 0$  and  $a_1 = 1$ .

#### Question 7

Consider the graph G depicted below and answer the questions that follow:



[3]

[3]

[3]

(2)

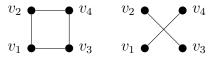
 $\left[5\right]$ 

[4]

[5]

- (a) Does G contain an Eulerian trail? Justify your answer clearly. (1)
- (b) Is G bipartite? If so, give the two partite sets; if not, explain why not. (1)
- (c) Determine whether or not the graph G is planar. If yes, draw it as a plane graph. If not, use Kuratowski's Theorem to prove that it is not. (2)

#### Question 8


[3]

[3]

- (a) Prove that a graph G is a tree if and only if it has a vertex induced subgraph which is a spanning tree of G. (2)
- (b) Can "vertex induced" be replaced by "edge induced" in part (a)? Motivate your answer. (1)

#### Question 9

The complement  $\overline{G}$  of a graph G is a graph with the same vertex set as G such that for any two distinct vertices  $u, v \in V(\overline{G}) = V(G)$ ,  $uv \in E(\overline{G})$  if and only if  $uv \notin E(G)$ . For instance, the following two graphs are the complements of each other:



Show that if T is a tree containing at least one vertex of degree 2, then  $\overline{T}$  is not Eulerian.